cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A256425 Decimal expansion of the generalized Euler constant gamma(1,3).

Original entry on oeis.org

6, 7, 7, 8, 0, 7, 1, 6, 3, 7, 8, 4, 2, 3, 2, 2, 1, 0, 5, 3, 3, 7, 2, 4, 6, 1, 2, 4, 5, 4, 9, 1, 4, 3, 8, 3, 1, 6, 9, 3, 1, 2, 5, 7, 9, 6, 3, 2, 5, 5, 6, 2, 0, 4, 1, 5, 2, 6, 8, 5, 6, 2, 3, 1, 3, 2, 5, 5, 8, 8, 2, 1, 3, 1, 6, 7, 1, 5, 3, 6, 5, 4, 0, 5, 2, 7, 2, 4, 7, 8, 2, 6, 8, 2, 1, 4, 2, 9
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2015

Keywords

Examples

			0.67780716378423221053372461245491438316931257963255620415268...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.3, p. 32.

Crossrefs

Programs

Formula

Equals gamma/3+Pi*sqrt(3)/18+log(3)/6.
Equals -(psi(1/3) + log(3))/3 = (A047787 - A002391)/3. - Amiram Eldar, Jan 07 2024

A097663 Decimal expansion of the constant 3*exp(psi(1/3) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

2, 3, 3, 1, 1, 9, 0, 9, 3, 1, 8, 4, 5, 6, 4, 1, 1, 7, 3, 0, 5, 3, 7, 5, 6, 2, 3, 2, 6, 5, 4, 4, 2, 8, 9, 5, 7, 4, 4, 6, 0, 8, 5, 8, 7, 0, 2, 5, 9, 2, 4, 5, 6, 4, 1, 4, 0, 9, 6, 0, 0, 7, 8, 7, 5, 6, 1, 6, 8, 2, 8, 5, 3, 1, 1, 5, 3, 1, 7, 4, 6, 3, 3, 5, 1, 1, 2, 2, 5, 5, 6, 6, 9, 4, 0, 6, 7, 7, 7, 0, 3, 3, 8, 9, 8
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-3 linear recursions with varying coefficients (see A097677 for example).

Examples

			0.23311909318456411730537562326544289574460858702592456414096...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(-Pi(R)/Sqrt(12))/Sqrt(3); // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[1/Sqrt[3]*E^(-Pi/Sqrt[12]), 10, 105][[1]] (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    3*exp(psi(1/3)+Euler)
    

Formula

Equals exp(-Pi/sqrt(12))/sqrt(3).

Extensions

More terms from Robert G. Wilson v, Aug 28 2004
Offset corrected by R. J. Mathar, Feb 05 2009

A200134 Decimal expansion of the negated value of the digamma function at 3/4.

Original entry on oeis.org

1, 0, 8, 5, 8, 6, 0, 8, 7, 9, 7, 8, 6, 4, 7, 2, 1, 6, 9, 6, 2, 6, 8, 8, 6, 7, 6, 2, 8, 1, 7, 1, 8, 0, 6, 9, 3, 1, 7, 0, 0, 7, 5, 0, 3, 9, 3, 3, 3, 1, 3, 6, 4, 5, 0, 6, 8, 0, 3, 3, 4, 9, 6, 7, 2, 1, 1, 1, 4, 0, 3, 8, 9, 5, 4, 3, 6, 4, 4, 3, 1, 8, 4, 4, 0, 5, 1, 9, 6, 3, 1, 6, 0, 9, 9, 4, 4
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(3/4) = -1.085860879786472169626886762817...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -EulerGamma(R) + Pi(R)/2 - 3*Log(2); // G. C. Greubel, Aug 29 2018
  • Maple
    evalf(-gamma+Pi/2-3*log(2)) ;
  • Mathematica
    RealDigits[ -PolyGamma[3/4], 10, 97] // First (* Jean-François Alcover, Feb 20 2013 *)
    N[StieltjesGamma[0, 3/4], 99] (* Peter Luschny, May 16 2018 *)
  • PARI
    -psi(3/4) \\ Charles R Greathouse IV, Nov 22 2011
    

Formula

Psi(3/4) = -gamma + Pi/2 - 3*log(2) = A000796 - A020777 = 3.14159... - 4.22745...
Pi = gamma(0,1/4) - gamma(0,3/4) = A020777 - A200134, where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018

A200135 Decimal expansion of the negated value of the digamma function at 1/5.

Original entry on oeis.org

5, 2, 8, 9, 0, 3, 9, 8, 9, 6, 5, 9, 2, 1, 8, 8, 2, 9, 5, 5, 4, 7, 2, 0, 7, 9, 6, 2, 4, 4, 9, 9, 5, 2, 1, 0, 4, 8, 2, 5, 5, 8, 8, 2, 7, 4, 2, 0, 6, 6, 4, 2, 8, 1, 0, 1, 7, 5, 8, 5, 8, 6, 6, 4, 1, 9, 1, 6, 2, 4, 7, 5, 4, 0, 9, 1, 6, 1, 9, 6, 5, 2, 5, 4, 6, 5, 7, 7, 8, 2, 4, 3, 1, 9, 5, 7, 0, 3, 6, 2, 4, 1, 2, 4, 0
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(1/5) =  -5.289039896592188295547207962...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -EulerGamma(R) -Pi(R)*Sqrt(1+2/Sqrt(5))/2 -5*Log(5)/4 -Sqrt(5)/4*Log((3+Sqrt(5)/2) ); // G. C. Greubel, Sep 03 2018
  • Maple
    -gamma-Pi*sqrt(1+2/sqrt(5))/2-5*log(5)/4-sqrt(5)/4*log((3+sqrt(5)/2) ); evalf(%) ;
  • Mathematica
    RealDigits[-PolyGamma[1/5], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    -psi(1/5) \\ Charles R Greathouse IV, Jul 19 2013
    

Formula

Psi(1/5) = -gamma - Pi*sqrt(1 + 2/sqrt(5))/2 - 5*log(5)/4 -sqrt(5)*log((3 + sqrt(5))/2)/4 where gamma = A001620, sqrt(1 + 2/sqrt(5)) = A019952, (3 + sqrt(5))/2 = A104457.

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A200064 Decimal expansion of the negated value of the digamma function at 2/3.

Original entry on oeis.org

1, 3, 1, 8, 2, 3, 4, 4, 1, 5, 7, 8, 6, 5, 8, 8, 4, 7, 2, 4, 0, 2, 3, 4, 0, 8, 1, 6, 6, 4, 5, 1, 1, 3, 1, 2, 1, 8, 7, 1, 3, 6, 2, 0, 4, 8, 6, 2, 7, 6, 7, 7, 4, 8, 8, 6, 2, 2, 8, 6, 6, 2, 6, 7, 6, 4, 7, 0, 4, 7, 5, 7, 6, 0, 4, 2, 4, 0, 1, 1, 7, 9, 4, 0, 5, 3, 0, 8, 2, 0, 1, 4, 0, 6, 3, 1, 4, 7
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			psi(2/3) = -1.3182344157865884724023408166...
		

Crossrefs

Programs

Formula

psi(2/3) = -gamma+Pi*sqrt(3)/6-3*log(3)/2 = A093602 - A047787 = 1.813799 -3.132033...

A222457 Decimal expansion of the negated value of the digamma function at 1/6.

Original entry on oeis.org

6, 3, 3, 2, 1, 2, 7, 5, 0, 5, 3, 7, 4, 9, 1, 4, 7, 9, 2, 4, 2, 4, 9, 6, 1, 5, 7, 4, 8, 4, 5, 7, 7, 7, 7, 2, 2, 5, 9, 0, 4, 9, 4, 8, 1, 3, 5, 3, 3, 6, 6, 9, 1, 4, 8, 0, 0, 3, 9, 9, 6, 1, 5, 7, 4, 1, 0, 0, 8, 1, 1, 8, 2, 2, 3, 4, 4, 9, 8, 3, 7, 7, 9, 8, 5, 2, 8
Offset: 1

Views

Author

Bruno Berselli, Feb 21 2013

Keywords

Examples

			Psi(1/6) = -6.3321275053749147924249615748457777225904948...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-PolyGamma[1/6], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(-psi[0](1/6)));
  • PARI
    -psi(1/6)
    

Formula

Psi(1/6) = -gamma -Pi*sqrt(3)/2 -3*log(3)/2 -2*log(2).

A200138 Decimal expansion of the negated value of the digamma function at 4/5.

Original entry on oeis.org

9, 6, 5, 0, 0, 8, 5, 6, 6, 7, 0, 6, 1, 3, 8, 4, 5, 9, 3, 9, 1, 2, 9, 7, 6, 3, 3, 1, 5, 6, 8, 3, 5, 4, 1, 9, 6, 3, 4, 1, 6, 0, 4, 8, 9, 6, 9, 5, 2, 2, 2, 8, 2, 9, 1, 0, 9, 8, 1, 0, 7, 9, 4, 2, 4, 4, 9, 6, 1, 2, 0, 7, 3, 8, 5, 6, 8, 4, 0, 0, 4, 3, 0, 6, 3, 7, 6
Offset: 0

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(4/5) = -0.965008566706138459391297633...
		

Crossrefs

Programs

  • Maple
    -gamma+Pi*sqrt(1+2/sqrt(5))/2-5*log(5)/4-sqrt(5)/4*log(3/2+sqrt(5)/2) ; evalf(%) ;
  • Mathematica
    RealDigits[ -PolyGamma[4/5], 10, 87] // First (* Jean-François Alcover, Feb 20 2013 *)
  • PARI
    -psi(4/5) \\ Charles R Greathouse IV, Nov 22 2011

Formula

Psi(4/5) = -gamma + Pi*sqrt(1+2/sqrt 5)/2 -5*log(5)*log((3+sqrt 5)/2)/4.

A222458 Decimal expansion of the negated value of the digamma function at 5/6.

Original entry on oeis.org

8, 9, 0, 7, 2, 9, 4, 1, 2, 6, 7, 2, 2, 6, 1, 2, 4, 0, 6, 4, 2, 7, 2, 6, 8, 0, 1, 9, 1, 9, 3, 1, 0, 5, 2, 5, 7, 3, 8, 2, 9, 6, 0, 6, 9, 2, 5, 5, 4, 4, 7, 4, 2, 1, 2, 9, 4, 3, 4, 1, 3, 5, 1, 2, 4, 5, 7, 1, 1, 6, 3, 8, 8, 5, 5, 4, 3, 6, 7, 2, 6, 9, 3, 2, 9, 0, 9
Offset: 0

Views

Author

Bruno Berselli, Feb 21 2013

Keywords

Examples

			Psi(5/6) = -0.890729412672261240642726801919310525738296...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-PolyGamma[5/6], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(-psi[0](5/6)));
  • PARI
    -psi(5/6)
    

Formula

Psi(5/6) = -gamma + Pi*sqrt(3)/2 - 3*log(3)/2 - 2*log(2).

A250129 Decimal expansion of the negated value of the digamma function at 1/8.

Original entry on oeis.org

8, 3, 8, 8, 4, 9, 2, 6, 6, 3, 2, 9, 5, 8, 5, 4, 8, 6, 7, 8, 0, 2, 7, 4, 2, 9, 2, 3, 0, 8, 6, 3, 4, 3, 0, 0, 0, 0, 5, 1, 4, 4, 6, 0, 4, 2, 4, 4, 9, 4, 7, 7, 1, 4, 3, 1, 1, 6, 0, 8, 6, 9, 2, 4, 6, 8, 2, 9, 0, 7, 8, 2, 3, 4, 4, 3, 3, 1, 3, 3, 4, 8, 8, 9, 7, 4, 1, 9, 3, 9, 7, 8, 0, 2, 1, 1, 5, 9, 0, 8, 4, 9, 4, 5, 8
Offset: 1

Views

Author

Jean-François Alcover, Jan 15 2015

Keywords

Examples

			Psi(1/8) = -8.388492663295854867802742923086343000051446...
		

Crossrefs

Programs

Formula

Psi(1/8) = -gamma - (1/2)*(1+sqrt(2))*Pi - sqrt(2)*arccoth(sqrt(2)) - 4*log(2).

A306716 Decimal expansion of the negated value of the digamma function at 1/10.

Original entry on oeis.org

1, 0, 4, 2, 3, 7, 5, 4, 9, 4, 0, 4, 1, 1, 0, 7, 6, 7, 9, 5, 1, 6, 8, 2, 1, 6, 2, 1, 9, 0, 1, 0, 0, 2, 5, 4, 0, 4, 2, 9, 1, 6, 4, 2, 5, 6, 2, 4, 4, 4, 1, 8, 8, 9, 2, 0, 3, 2, 6, 3, 9, 2, 0, 8, 4, 1, 0, 8, 8, 6, 7, 9, 1, 0, 8, 8, 1, 5, 2, 6, 2, 7, 0, 2, 3, 1, 5, 3, 9, 8, 3, 4, 9, 1, 2, 1, 9, 9, 2, 7, 9, 8, 0, 8, 2
Offset: 2

Views

Author

Vaclav Kotesovec, Aug 22 2019

Keywords

Examples

			Equals 10.4237549404110767951682162190100254042916425624441889203263920841...
		

Crossrefs

Programs

  • Maple
    evalf(-Psi(1/10), 102);
  • Mathematica
    RealDigits[-PolyGamma[1/10], 10, 105][[1]]
  • PARI
    -psi(1/10)

Formula

Psi(1/10) = -gamma - Pi*5^(1/4)*(sqrt(2 + sqrt(5))/2) - 2*log(2) - 5*log(5)/4 - 3*sqrt(5)*log((1 + sqrt(5))/2)/2, where gamma is the Euler-Mascheroni constant A001620.
Equals gamma - H(-9/10), H(z) the harmonic number. - Peter Luschny, Aug 22 2019
Showing 1-10 of 12 results. Next