cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A256843 Decimal expansion of the generalized Euler constant gamma(2,3).

Original entry on oeis.org

0, 7, 3, 2, 0, 7, 3, 7, 5, 7, 0, 6, 1, 5, 9, 5, 9, 3, 6, 6, 9, 0, 3, 1, 8, 5, 9, 9, 0, 7, 5, 2, 9, 1, 3, 9, 0, 7, 4, 6, 2, 3, 8, 3, 0, 2, 6, 8, 3, 0, 9, 3, 4, 5, 6, 2, 9, 3, 9, 0, 6, 4, 4, 6, 6, 9, 8, 5, 1, 0, 9, 4, 2, 7, 4, 5, 9, 7, 4, 0, 4, 1, 7, 7, 2, 3, 0, 8, 1, 5, 5, 3, 0, 8, 6, 0, 9, 0, 3, 1, 6, 0, 1, 6, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 11 2015

Keywords

Examples

			0.07320737570615959366903185990752913907462383026830934562939...
		

Crossrefs

Cf. A001620 (gamma(1,1) = EulerGamma), A002391, A200064.
Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12).
Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/3 - Pi(R)/(6*Sqrt(3)) + Log(3)/6; // G. C. Greubel, Aug 28 2018
  • Mathematica
    Join[{0}, RealDigits[-Log[3]/3 - PolyGamma[2/3]/3, 10, 105] // First]
  • PARI
    default(realprecision, 100); Euler/3 - Pi/(6*sqrt(3)) + log(3)/6 \\ G. C. Greubel, Aug 28 2018
    

Formula

Equals EulerGamma/3 - Pi/(6*sqrt(3)) + log(3)/6.
Equals -(psi(2/3) + log(3))/3 = (A200064 - A002391)/3. - Amiram Eldar, Jan 07 2024

A200135 Decimal expansion of the negated value of the digamma function at 1/5.

Original entry on oeis.org

5, 2, 8, 9, 0, 3, 9, 8, 9, 6, 5, 9, 2, 1, 8, 8, 2, 9, 5, 5, 4, 7, 2, 0, 7, 9, 6, 2, 4, 4, 9, 9, 5, 2, 1, 0, 4, 8, 2, 5, 5, 8, 8, 2, 7, 4, 2, 0, 6, 6, 4, 2, 8, 1, 0, 1, 7, 5, 8, 5, 8, 6, 6, 4, 1, 9, 1, 6, 2, 4, 7, 5, 4, 0, 9, 1, 6, 1, 9, 6, 5, 2, 5, 4, 6, 5, 7, 7, 8, 2, 4, 3, 1, 9, 5, 7, 0, 3, 6, 2, 4, 1, 2, 4, 0
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(1/5) =  -5.289039896592188295547207962...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); -EulerGamma(R) -Pi(R)*Sqrt(1+2/Sqrt(5))/2 -5*Log(5)/4 -Sqrt(5)/4*Log((3+Sqrt(5)/2) ); // G. C. Greubel, Sep 03 2018
  • Maple
    -gamma-Pi*sqrt(1+2/sqrt(5))/2-5*log(5)/4-sqrt(5)/4*log((3+sqrt(5)/2) ); evalf(%) ;
  • Mathematica
    RealDigits[-PolyGamma[1/5], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    -psi(1/5) \\ Charles R Greathouse IV, Jul 19 2013
    

Formula

Psi(1/5) = -gamma - Pi*sqrt(1 + 2/sqrt(5))/2 - 5*log(5)/4 -sqrt(5)*log((3 + sqrt(5))/2)/4 where gamma = A001620, sqrt(1 + 2/sqrt(5)) = A019952, (3 + sqrt(5))/2 = A104457.

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A222457 Decimal expansion of the negated value of the digamma function at 1/6.

Original entry on oeis.org

6, 3, 3, 2, 1, 2, 7, 5, 0, 5, 3, 7, 4, 9, 1, 4, 7, 9, 2, 4, 2, 4, 9, 6, 1, 5, 7, 4, 8, 4, 5, 7, 7, 7, 7, 2, 2, 5, 9, 0, 4, 9, 4, 8, 1, 3, 5, 3, 3, 6, 6, 9, 1, 4, 8, 0, 0, 3, 9, 9, 6, 1, 5, 7, 4, 1, 0, 0, 8, 1, 1, 8, 2, 2, 3, 4, 4, 9, 8, 3, 7, 7, 9, 8, 5, 2, 8
Offset: 1

Views

Author

Bruno Berselli, Feb 21 2013

Keywords

Examples

			Psi(1/6) = -6.3321275053749147924249615748457777225904948...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-PolyGamma[1/6], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(-psi[0](1/6)));
  • PARI
    -psi(1/6)
    

Formula

Psi(1/6) = -gamma -Pi*sqrt(3)/2 -3*log(3)/2 -2*log(2).

A222458 Decimal expansion of the negated value of the digamma function at 5/6.

Original entry on oeis.org

8, 9, 0, 7, 2, 9, 4, 1, 2, 6, 7, 2, 2, 6, 1, 2, 4, 0, 6, 4, 2, 7, 2, 6, 8, 0, 1, 9, 1, 9, 3, 1, 0, 5, 2, 5, 7, 3, 8, 2, 9, 6, 0, 6, 9, 2, 5, 5, 4, 4, 7, 4, 2, 1, 2, 9, 4, 3, 4, 1, 3, 5, 1, 2, 4, 5, 7, 1, 1, 6, 3, 8, 8, 5, 5, 4, 3, 6, 7, 2, 6, 9, 3, 2, 9, 0, 9
Offset: 0

Views

Author

Bruno Berselli, Feb 21 2013

Keywords

Examples

			Psi(5/6) = -0.890729412672261240642726801919310525738296...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-PolyGamma[5/6], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(-psi[0](5/6)));
  • PARI
    -psi(5/6)
    

Formula

Psi(5/6) = -gamma + Pi*sqrt(3)/2 - 3*log(3)/2 - 2*log(2).

A250129 Decimal expansion of the negated value of the digamma function at 1/8.

Original entry on oeis.org

8, 3, 8, 8, 4, 9, 2, 6, 6, 3, 2, 9, 5, 8, 5, 4, 8, 6, 7, 8, 0, 2, 7, 4, 2, 9, 2, 3, 0, 8, 6, 3, 4, 3, 0, 0, 0, 0, 5, 1, 4, 4, 6, 0, 4, 2, 4, 4, 9, 4, 7, 7, 1, 4, 3, 1, 1, 6, 0, 8, 6, 9, 2, 4, 6, 8, 2, 9, 0, 7, 8, 2, 3, 4, 4, 3, 3, 1, 3, 3, 4, 8, 8, 9, 7, 4, 1, 9, 3, 9, 7, 8, 0, 2, 1, 1, 5, 9, 0, 8, 4, 9, 4, 5, 8
Offset: 1

Views

Author

Jean-François Alcover, Jan 15 2015

Keywords

Examples

			Psi(1/8) = -8.388492663295854867802742923086343000051446...
		

Crossrefs

Programs

Formula

Psi(1/8) = -gamma - (1/2)*(1+sqrt(2))*Pi - sqrt(2)*arccoth(sqrt(2)) - 4*log(2).

A200136 Decimal expansion of the negated value of the digamma function at 2/5.

Original entry on oeis.org

2, 5, 6, 1, 3, 8, 4, 5, 4, 4, 5, 8, 5, 1, 1, 6, 1, 4, 5, 7, 3, 0, 6, 7, 5, 4, 8, 2, 0, 4, 7, 5, 2, 8, 4, 5, 5, 8, 2, 6, 3, 6, 1, 0, 9, 6, 5, 1, 0, 8, 1, 0, 1, 5, 7, 2, 3, 3, 9, 5, 3, 6, 7, 5, 2, 1, 2, 6, 1, 1, 0, 4, 2, 9, 3, 0, 5, 4, 1, 3, 8, 3, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(2/5) = -2.5613845445851161457306754820475...
		

Crossrefs

Programs

  • Maple
    -gamma-Pi*sqrt(1-2/sqrt(5))/2-5*log(5)/4+sqrt(5)*log((3+sqrt(5))/2)/4 ; evalf(%) ;
  • Mathematica
    RealDigits[ PolyGamma[2/5], 10, 84] // First (* Jean-François Alcover, Feb 21 2013 *)
  • PARI
    -psi(2/5) \\ Charles R Greathouse IV, Jul 19 2013

Formula

Psi(2/5) = -gamma -Pi*sqrt(1-2/sqrt 5)/2 -5*log(5)/4 +sqrt(5)*log((3+sqrt 5)/2)/4.

A200063 Indices n where A079878(n) = n.

Original entry on oeis.org

1, 2, 8, 32, 46, 392, 12230, 155942, 659488, 1025582, 1047128, 3437088, 1449322158, 1452777560, 1691887144, 4558298126, 4840156480, 39554086678, 353617531486, 608231808384, 619986226720, 969355365422
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Comments

a(23) > 4*10^12. - Donovan Johnson, Nov 21 2011

Examples

			A079878(46)=46, which adds 46 to the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a200063 n = a200063_list !! (n-1)
    a200063_list = map (+ 1) $ elemIndices 0 $ zipWith (-) [1..] a079878_list
    -- Reinhard Zumkeller, Nov 13 2011

Formula

{n: A079878(n)=n}.

Extensions

a(13)-a(22) from Donovan Johnson, Nov 21 2011
Showing 1-7 of 7 results.