A047793
a(n) = Sum_{k=0..n} |Stirling1(n,k)*Stirling2(n,k)|.
Original entry on oeis.org
1, 1, 2, 12, 120, 1750, 34615, 882868, 28008694, 1076404824, 49100939538, 2615329877358, 160486317081673, 11218516998346216, 884855465842682269, 78106000651400369100, 7660758993518625156050, 829683453926089044978468
Offset: 0
-
List([0..20], n-> Sum([0..n], k-> Stirling1(n,k)*Stirling2(n,k) )); # G. C. Greubel, Aug 07 2019
-
[(&+[(-1)^(n-k)*StirlingFirst(n,k)*StirlingSecond(n,k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
-
seq(add((-1)^(n-k)*stirling1(n, k)*stirling2(n, k), k = 0..n), n = 0.. 20); # G. C. Greubel, Aug 07 2019
-
Table[Sum[Abs[StirlingS1[n,k]StirlingS2[n,k]],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 18 2017 *)
-
makelist(sum(abs(stirling1(n,k))*stirling2(n,k),k,0,n),n,0,12); /* Emanuele Munarini, Jul 01 2011 */
-
{a(n) = sum(k=0,n, (-1)^(n-k)*stirling(n,k,1)*stirling(n,k,2))};
vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
-
[sum(stirling_number1(n,k)*stirling_number2(n,k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
A047792
a(n) = Sum_{k=0..n} Stirling1(n,k)*Stirling2(n,k).
Original entry on oeis.org
1, 1, 0, -6, 36, 50, -6575, 145222, -1489978, -49083480, 4200404478, -182031111702, 4165517606173, 176264238017452, -33427749628678925, 2913726991238703330, -165770248921085801710, 1422295225609567363172, 1326793746164926878993976
Offset: 0
-
List([0..20], n-> Sum([0..n], k-> (-1)^(n-k)*Stirling1(n,k) *Stirling2(n,k) )); # G. C. Greubel, Aug 07 2019
-
[(&+[StirlingFirst(n,k)*StirlingSecond(n,k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
-
seq(add(stirling1(n, k)*stirling2(n, k), k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
-
Flatten[{1, Table[Sum[StirlingS1[n, k]*StirlingS2[n, k], {k, n}], {n,20}] }] (* Vaclav Kotesovec, Oct 13 2018 *)
-
{a(n) = sum(k=0,n, stirling(n,k,1)*stirling(n,k,2))};
vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
-
[sum((-1)^(n-k)*stirling_number1(n,k)*stirling_number2(n,k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
A047794
a(n) = Sum_{k=0..n} C(n,k)*|Stirling1(n,k)*Stirling2(n,k)|.
Original entry on oeis.org
1, 1, 3, 34, 631, 16871, 617356, 28968990, 1680536159, 117572734195, 9715771690081, 932711356031016, 102653506699902874, 12810868034079756421, 1795954763065584594656, 280569433733767673934426, 48506369621902094002862671, 9224242346164172284054561019
Offset: 0
-
List([0..20], n-> Sum([0..n], k-> Stirling1(n,k)*Stirling2(n,k) *Binomial(n,k) )); # G. C. Greubel, Aug 07 2019
-
[(&+[(-1)^(n-k)*StirlingFirst(n,k)*StirlingSecond(n,k) *Binomial(n,k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
-
seq(add((-1)^(n-k)*binomial(n, k)*stirling1(n, k)*stirling2(n, k), k = 0 .. n), n = 0..20); # G. C. Greubel, Aug 07 2019
-
Table[Sum[Binomial[n,k]Abs[StirlingS1[n,k]StirlingS2[n,k]],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Apr 10 2012 *)
-
{a(n) = sum(k=0,n, (-1)^(n-k)*stirling(n,k,1)*stirling(n,k,2) *binomial(n,k))};
vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
-
[sum(stirling_number1(n,k)*stirling_number2(n,k)*binomial(n,k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
Showing 1-3 of 3 results.