A047797 a(n) = Sum_{k=0..n} Stirling2(n,k)^2.
1, 1, 2, 11, 87, 952, 13513, 237113, 5016728, 125121009, 3615047527, 119384499720, 4455637803543, 186152008588691, 8636436319397292, 441871067839416319, 24781002306869712365, 1515279889256750470086, 100546673139756241189021
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..320
Programs
-
GAP
List([0..20], n-> Sum([0..n], k-> Stirling2(n,k)^2 )); # G. C. Greubel, Aug 07 2019
-
Magma
[(&+[StirlingSecond(n,k)^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 07 2019
-
Maple
seq(add(Stirling2(n, k)^2, k = 0..n), n = 0..20); # G. C. Greubel, Aug 07 2019
-
Mathematica
Table[Sum[StirlingS2[n,k]^2,{k,0,n}],{n,0,20}] (* Emanuele Munarini, Jul 01 2011 *)
-
Maxima
makelist(sum(stirling2(n,k)^2,k,0,n),n,0,20); /* Emanuele Munarini, Jul 01 2011 */
-
PARI
{a(n) = sum(k=0,n, stirling(n,k,2)^2)}; vector(20, n, n--; a(n)) \\ G. C. Greubel, Aug 07 2019
-
Sage
[sum(stirling_number2(n,k)^2 for k in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 07 2019
Comments