cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047819 a(n) = Product_{i=1..n} ((i+3)*(i+4)*(i+5))/(i*(i+1)*(i+2)).

Original entry on oeis.org

1, 20, 175, 980, 4116, 14112, 41580, 108900, 259545, 572572, 1184183, 2318680, 4331600, 7768320, 13441968, 22535064, 36729945, 58373700, 90684055, 138003404, 206108980, 302588000, 437287500, 622849500, 875343105, 1215006156, 1667110095
Offset: 0

Views

Author

Keywords

Comments

Number of tilings of a <3,n,3> hexagon.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 18 2005
Partial sums of A107891. - Peter Bala, Sep 21 2007
Determinant of the 3 X 3 matrix with rows [C(n+3,3) C(n+3,4) C(n+3,5)], [C(n+4,3) C(n+4,4) C(n+4,5)], and [C(n+5,3) C(n+5,4) C(n+5,5)]. - J. M. Bergot, Sep 10 2013

Examples

			G.f. = 1 + 20*x + 175*x^2 + 980*x^3 + 4116*x^4 + 14112*x^5 + 41580*x^6 + ...
		

References

  • O. D. Anderson, Find the next sequence, J. Rec. Math., 8 (No. 4, 1975-1976), 241.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 232, # 2 and p. 105, eq.(ii), K(0a(2,5,n))).

Crossrefs

Third row of array A103905.

Programs

  • Maple
    a:=n->(n+1)*(n+2)^2*(n+3)^3*(n+4)^2*(n+5)/8640: seq(a(n),n=0..30); # Emeric Deutsch, Jun 18 2005
  • Mathematica
    a[n_] :=(n + 1)*(n + 2)^2*(n + 3)^3*(n + 4)^2*(n + 5)/8640;
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 19 2018, after Emeric Deutsch *)
  • PARI
    {a(n) = if( n<0, 0, binomial(n+5, 5) * binomial(n+4, 3) * (n+3) / 12)}; /* Michael Somos, Nov 14 2002 */
    
  • PARI
    {a(n) = my(s=sign(n+3)); n=abs(n+3)-3; -s/8 * polcoeff( charpoly( matrix(n+3, n+3, i, j, (i-j)^2)), n)}; /* Michael Somos, Nov 14 2002 */

Formula

G.f.: (1 + 10*x + 20*x^2 + 10*x^3 + x^4) / (1 - x)^10. - Michael Somos, Nov 14 2002
a(n) = C(n+3,n+2)*C(n+4,n+1)*C(n+5,n)/12. - Zerinvary Lajos, May 29 2007
a(n-3) = (1/24)*Sum_{1 <= x_1, x_2, x_3 <= n} (det V(x_1,x_2,x_3))^2 = (1/24)*Sum_ {1 <= i,j,k <= n} ((i-j)(i-k)(j-k))^2, where V(x_1,x_2,x_3) is the Vandermonde matrix of order 3. - Peter Bala, Sep 21 2007
a(n) = -a(-6-n) for all n in Z. - Michael Somos, Dec 26 2016
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 5195/2 - 2160*zeta(3).
Sum_{n>=0} (-1)^n/a(n) = 17205/2 - 9600*log(2) - 1620*zeta(3). (End)