cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000171 Number of self-complementary graphs with n nodes.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 10, 36, 0, 0, 720, 5600, 0, 0, 703760, 11220000, 0, 0, 9168331776, 293293716992, 0, 0, 1601371799340544, 102484848265030656, 0, 0, 3837878966366932639744, 491247277315343649710080, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n) = A007869(n)-A054960(n), where A007869(n) is number of unlabeled graphs with n nodes and an even number of edges and A054960(n) is number of unlabeled graphs with n nodes and an odd number of edges.

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 139, Table 6.1.1.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008406 (triangle of coefficients of the "graph polynomial").

Programs

  • Mathematica
    < -1, {n, 1, 20}]  (* Geoffrey Critzer, Oct 21 2012 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := 4 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + 2 Total[v];
    a[n_] := Module[{s = 0}, Switch[Mod[n, 4], 2|3, 0, _, Do[s += permcount[4 p]*2^edges[p]*If[OddQ[n], n*2^Length[p], 1], {p, IntegerPartitions[ Quotient[n, 4]]}]; s/n!]];
    Array[a, 40] (* Jean-François Alcover, Aug 26 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {4*sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + 2*sum(i=1, #v, v[i])}
    a(n) = {my(s=0); if(n%4<2, forpart(p=n\4, s+=permcount(4*Vec(p)) * 2^edges(p) * if(n%2, n*2^#p, 1))); s/n!} \\ Andrew Howroyd, Sep 16 2018

Formula

a(4n) = A003086(2n).
a(4*n+1) = A047832(n), a(4*n+2) = a(4*n+3) = 0. - Andrew Howroyd, Sep 16 2018

Extensions

More terms from Ronald C. Read and Vladeta Jovovic

A052113 Number of self-complementary directed 2-multigraphs with loops on n nodes.

Original entry on oeis.org

1, 5, 41, 1023, 67173, 10771355, 5957216417, 6971880064072, 32181855124938673, 290910256437910060602, 11266525980714327353251353, 815201852317091835592374861144, 266236010885685869904935495261864265, 157899403462038839125137738939159318226008
Offset: 1

Views

Author

Vladeta Jovovic, Jan 21 2000

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).

References

  • V. Jovovic, On the number of m-place relations (in Russian), Logiko-algebraicheskie konstruktsii, Tver, 1992, 59-66.

Crossrefs

Programs

  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {2*sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i],v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]))}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018

Extensions

Terms a(14) and beyond from Andrew Howroyd, Sep 16 2018

A055973 Number of unlabeled digraphs with loops (relations) on n nodes and with an even number of arcs.

Original entry on oeis.org

1, 1, 6, 52, 1540, 145984, 48467296, 56141454464, 229148555640864, 3333310786076963968, 174695272746896566439424, 33301710992539090379269318144, 23278728241293494584257987458067456, 60084295633556503802059558812644803074048, 576025077880237078776946976495257043823396069376
Offset: 0

Views

Author

Vladeta Jovovic, Jul 19 2000

Keywords

Comments

Also relations considered equivalent when isomorphic and when complemented. - Christian G. Bower, Jan 05 2004

Crossrefs

Formula

a(2*n) = (A000595(2*n) + A047832(n))/2; a(2*n+1) = A000595(2*n+1)/2.
a(n) = (A000595(n) + A000171(2*n+1))/2.
a(n) = sum {1*s_1+2*s_2+...=n, 1*t_1+2*t_2=2} (fixA[s_1, s_2, ...;t_1, t_2]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!)) where fixA[...] = prod {i, j>=1} ( (sum {d|lcm(i, j)} (d*t_d))^(gcd(i, j)*s_i*s_j)) - Christian G. Bower, Jan 05 2004

Extensions

a(0)=1 prepended and terms a(13) and beyond from Andrew Howroyd, Apr 19 2020

A055974 Number of unlabeled digraphs with loops (relations) on n nodes and with an odd number of arcs.

Original entry on oeis.org

0, 1, 4, 52, 1504, 145984, 48461696, 56141454464, 229148544420864, 3333310786076963968, 174695272746603272722432, 33301710992539090379269318144, 23278728241293494481773139193036800, 60084295633556503802059558812644803074048, 576025077880237078776946485247979728479746359296
Offset: 0

Views

Author

Vladeta Jovovic, Jul 19 2000

Keywords

Crossrefs

Formula

a(2*n) = (A000595(2*n) - A047832(n))/2; a(2*n+1) = A000595(2*n+1)/2.
a(n) = (A000595(n) - A000171(2*n+1))/2.

Extensions

a(0)=0 prepended and terms a(13) and beyond from Andrew Howroyd, Apr 19 2020

A052152 Number of self-complementary directed 3-multigraphs with loops on 2n nodes.

Original entry on oeis.org

8, 8256, 1431787520, 48038430520647680, 330117345346734148058349568, 483957144078539402095793819136691273728, 155682086691161145712706205845400916732707415735140352
Offset: 1

Views

Author

Vladeta Jovovic, Jan 24 2000

Keywords

Crossrefs

A051269 Number of self-complementary 3-place relations on a 2n-element set.

Original entry on oeis.org

8, 536887296, 6760803201217232481859791749120, 301541899055510925582216106793458790276811863115050592580304890195754352640
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047832.
Showing 1-6 of 6 results.