A047842 Describe n (count digits in order of increasing value, ignoring missing digits).
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1011, 21, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1012, 1112, 22, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1013, 1113, 1213, 23, 1314, 1315, 1316, 1317, 1318, 1319, 1014, 1114, 1214, 1314, 24, 1415, 1416
Offset: 0
Examples
a(31) = 1113 because (one 1, one 3) make up 31. 101 contains one 0 and two 1's, so a(101) = 1021. a(131) = 2113. For n = 20231231, the digits of the date 2023-12-31, last day of 2023, a(n) = 10213223 is a fixed point: a(a(n)) = a(n) (cf. A235775). Since a(n) is invariant under permutation of the digits of n (leading zeros avoided), this is independent of the chosen notation, yyyy-mm-dd or mm/dd/yyyy or dd.mm.yyyy. - _M. F. Hasler_, Jan 11 2024
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Onno M. Cain and Sela T. Enin, Inventory Loops (i.e. Counting Sequences) have Pre-period 2 max S_1 + 60, arXiv:2004.00209 [math.NT], 2020.
- Andre Kowacs, Studies on the Pea Pattern Sequence, arXiv:1708.06452 [math.HO], 2017.
Crossrefs
Programs
-
Haskell
import Data.List (sort, group); import Data.Function (on) a047842 :: Integer -> Integer a047842 n = read $ concat $ zipWith ((++) `on` show) (map length xs) (map head xs) where xs = group $ sort $ map (read . return) $ show n -- Reinhard Zumkeller, Jan 15 2014
-
Mathematica
dc[n_] :=FromDigits@Flatten@Select[Table[{DigitCount[n, 10, k], k}, {k, 0, 9}], #[[1]] > 0 &];Table[dc[n], {n, 0, 46}] (* Ray Chandler, Jan 09 2009 *) Array[FromDigits@ Flatten@ Map[Reverse, Tally@ Sort@ IntegerDigits@ #] &, 46] (* Michael De Vlieger, Jul 15 2020 *)
-
PARI
A047842(n)={if(n, local(c=1, S="", d=vecsort(digits(n)), a(i)=Str(S, c, d[i])); for(i=2, #d, if(d[i]==d[i-1], c++, S=a(i-1); c=1)); eval(a(#d)), 10)} \\ M. F. Hasler, Feb 25 2018; edited Jan 10 2024
-
Python
def A047842(n): s, x = '', str(n) for i in range(10): y = str(i) c = str(x.count(y)) if c != '0': s += c+y return int(s) # Chai Wah Wu, Jan 03 2015
Formula
a(n) = a(A328447(n)) = a(m) for all n and all m having the same digits as n, with multiplicity. - M. F. Hasler, Jan 11 2024
Extensions
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Comments