A047858 T(n, k) = 2^(k-1)*(k + 2*n) - n + 1, array read by descending antidiagonals.
1, 2, 1, 5, 3, 1, 13, 8, 4, 1, 33, 20, 11, 5, 1, 81, 48, 27, 14, 6, 1, 193, 112, 63, 34, 17, 7, 1, 449, 256, 143, 78, 41, 20, 8, 1, 1025, 576, 319, 174, 93, 48, 23, 9, 1, 2305, 1280, 703, 382, 205, 108, 55, 26, 10, 1, 5121, 2816, 1535, 830, 445, 236, 123, 62, 29, 11, 1
Offset: 0
Examples
From _Stefano Spezia_, Jan 03 2023: (Start) The array begins: 1, 2, 5, 13, 33, 81,... 1, 3, 8, 20, 48, 112,... 1, 4, 11, 27, 63, 143,... 1, 5, 14, 34, 78, 174,... 1, 6, 17, 41, 93, 205,... 1, 7, 20, 48, 108, 236,... ... (End)
Programs
-
Mathematica
T[n_,k_]:=2^(k-1)*(k+2n)-n+1;Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,0,10}]//Flatten (* Stefano Spezia, Jan 02 2023 *)
Formula
T(n, k) = 2^(k-1)*(k + 2*n) - n + 1. - Benoit Cloitre, Jun 17 2003
G.f.: (1 - x - 3*y + 4*x*y + 3*y^2 - 5*x*y^2)/((1 - x)^2*(1 - 2*y)^2*(1 - y)). - Stefano Spezia, Jan 02 2023
Extensions
New name using formula by Benoit Cloitre, Joerg Arndt, Jan 03 2023
Comments