A047859
a(n) = T(2, n), where T is the array given by A047858.
Original entry on oeis.org
1, 4, 11, 27, 63, 143, 319, 703, 1535, 3327, 7167, 15359, 32767, 69631, 147455, 311295, 655359, 1376255, 2883583, 6029311, 12582911, 26214399, 54525951, 113246207, 234881023, 486539263, 1006632959, 2080374783, 4294967295, 8858370047, 18253611007, 37580963839
Offset: 0
A047860
a(n) = T(3,n), array T given by A047858.
Original entry on oeis.org
1, 5, 14, 34, 78, 174, 382, 830, 1790, 3838, 8190, 17406, 36862, 77822, 163838, 344062, 720894, 1507326, 3145726, 6553598, 13631486, 28311550, 58720254, 121634814, 251658238, 520093694, 1073741822, 2214592510, 4563402750
Offset: 0
G.f. = 1 + 5*x + 14*x^2 + 34*x^3 + 78*x^4 + 174*x^5 + 382*x^6 + 830*x^7 + ...
Using the Pythagoras Tree L-system, a(0) = #0 = 1, a(1) = #1[0]0 = 5, a(2) = #11[1[0]0]1[0]0 = 14. - _Michael Somos_, Jan 12 2015
n-th difference of a(n), a(n-1), ..., a(0) is (4, 5, 6, ...).
-
[2^(n-1)*(n+6)-2: n in [0..30]]; // Vincenzo Librandi, Sep 28 2011
-
LinearRecurrence[{5,-8,4},{1,5,14},30] (* Harvey P. Dale, Sep 29 2012 *)
-
{a(n) = if( n<0, 0, [1, 1, 1, 1] * [2, 0, 0, 0; 1, 2, 0, 0; 1, 0, 1, 0; 1, 0, 0, 1]^n * [1, 0, 0, 0]~ )}; /* Michael Somos, Jan 12 2015 */
-
a(n)=([0,1,0; 0,0,1; 4,-8,5]^n*[1;5;14])[1,1] \\ Charles R Greathouse IV, Jul 19 2016
A036542
a(n) = T(n, n), array T given by A047858.
Original entry on oeis.org
1, 3, 11, 34, 93, 236, 571, 1338, 3065, 6904, 15351, 33782, 73717, 159732, 344051, 737266, 1572849, 3342320, 7077871, 14942190, 31457261, 66060268, 138412011, 289406954, 603979753, 1258291176, 2617245671, 5435817958, 11274289125, 23353884644, 48318382051
Offset: 0
-
LinearRecurrence[{6,-13,12,-4},{1,3,11,34},40] (* Harvey P. Dale, Jul 21 2024 *)
-
Vec((1-3*x+6*x^2-5*x^3)/((1-x)^2*(1-2*x)^2) + O(x^40)) \\ Colin Barker, Feb 20 2016
A047861
a(n) = T(4,n), array T given by A047858.
Original entry on oeis.org
1, 6, 17, 41, 93, 205, 445, 957, 2045, 4349, 9213, 19453, 40957, 86013, 180221, 376829, 786429, 1638397, 3407869, 7077885, 14680061, 30408701, 62914557, 130023421, 268435453, 553648125, 1140850685, 2348810237, 4831838205, 9932111869, 20401094653, 41875931133
Offset: 0
A047862
a(n) = T(5,n), array T given by A047858.
Original entry on oeis.org
1, 7, 20, 48, 108, 236, 508, 1084, 2300, 4860, 10236, 21500, 45052, 94204, 196604, 409596, 851964, 1769468, 3670012, 7602172, 15728636, 32505852, 67108860, 138412028, 285212668, 587202556, 1207959548, 2483027964, 5100273660, 10468982780, 21474836476
Offset: 0
A048467
a(n) = T(6,n), array T given by A047858.
Original entry on oeis.org
1, 8, 23, 55, 123, 267, 571, 1211, 2555, 5371, 11259, 23547, 49147, 102395, 212987, 442363, 917499, 1900539, 3932155, 8126459, 16777211, 34603003, 71303163, 146800635, 301989883, 620756987, 1275068411, 2617245691
Offset: 0
n-th difference of a(n), a(n-1), ..., a(0) is (7, 8, 9, ...).
-
[2^(n-1)*(n+12)-5: n in [0..30]]; // Vincenzo Librandi, Sep 28 2011
-
LinearRecurrence[{5,-8,4},{1,8,23},30] (* or *) CoefficientList[ Series[ (-9x^2+3x+1)/((1-x)(1-2x)^2),{x,0,30}],x] (* Harvey P. Dale, Jul 07 2011 *)
-
Vec((-9*x^2+3*x+1)/((1-x)*(1-2*x)^2) + O(x^40)) \\ Andrew Howroyd, Feb 15 2018
A048468
a(n) = T(7,n), array T given by A047858.
Original entry on oeis.org
1, 9, 26, 62, 138, 298, 634, 1338, 2810, 5882, 12282, 25594, 53242, 110586, 229370, 475130, 983034, 2031610, 4194298, 8650746, 17825786, 36700154, 75497466, 155189242, 318767098, 654311418, 1342177274, 2751463418, 5637144570, 11542724602, 23622320122
Offset: 0
-
[2^(n-1)*(n+14)-6: n in [0..30]]; // Vincenzo Librandi, Sep 28 2011
-
LinearRecurrence[{5,-8,4},{1,9,26},30] (* Harvey P. Dale, Apr 19 2012 *)
-
Vec((1+4*x-11*x^2)/((1-x)*(1-2*x)^2) + O(x^40)) \\ Colin Barker, Feb 18 2016
A048469
a(n) = T(8,n), array T given by A047858.
Original entry on oeis.org
1, 10, 29, 69, 153, 329, 697, 1465, 3065, 6393, 13305, 27641, 57337, 118777, 245753, 507897, 1048569, 2162681, 4456441, 9175033, 18874361, 38797305, 79691769, 163577849, 335544313, 687865849, 1409286137, 2885681145, 5905580025, 12079595513, 24696061945
Offset: 0
A195857
a(n) = T(9, n), array T given by A047858.
Original entry on oeis.org
1, 11, 32, 76, 168, 360, 760, 1592, 3320, 6904, 14328, 29688, 61432, 126968, 262136, 540664, 1114104, 2293752, 4718584, 9699320, 19922936, 40894456, 83886072, 171966456, 352321528, 721420280, 1476395000, 3019898872, 6174015480, 12616466424, 25769803768
Offset: 0
-
[2^(n-1)*(n+18)-8: n in [0..30]]
-
Vec((1+6*x-15*x^2)/((1-x)*(1-2*x)^2) + O(x^40)) \\ Colin Barker, Aug 24 2016
A195858
a(n) = T(10, n), array T given by A047858.
Original entry on oeis.org
1, 12, 35, 83, 183, 391, 823, 1719, 3575, 7415, 15351, 31735, 65527, 135159, 278519, 573431, 1179639, 2424823, 4980727, 10223607, 20971511, 42991607, 88080375, 180355063, 369098743, 754974711, 1543503863, 3154116599, 6442450935, 13153337335, 26843545591
Offset: 0
-
[2^(n-1)*(n+20)-9: n in [0..30]]; // Vincenzo Librandi, Sep 28 2011
-
LinearRecurrence[{5,-8,4},{1,12,35},40] (* Harvey P. Dale, Jul 24 2019 *)
-
Vec((1+7*x-17*x^2)/((1-x)*(1-2*x)^2) + O(x^40)) \\ Colin Barker, Aug 24 2016
Showing 1-10 of 11 results.
Comments