cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047872 a(n) = floor(abs(B(2*n + 2)/B(2*n))) where B(n) is the n-th Bernoulli number.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 6, 7, 9, 11, 13, 16, 19, 22, 25, 28, 31, 35, 39, 43, 47, 52, 57, 62, 67, 72, 78, 83, 89, 95, 102, 108, 115, 122, 129, 136, 144, 152, 160, 168, 176, 185, 193, 202, 212, 221, 231, 240, 250, 260, 271, 281, 292, 303, 314, 326, 337, 349, 361, 373
Offset: 0

Views

Author

Keywords

Examples

			a(3) = floor(abs(B(4)/B(3))) = floor((1/30)/(1/42)) = floor(7/5) = floor(1.4) = 1.
a(249) = floor(abs(B(250)/B(249))) = 6319.
		

References

  • Glaisher, J. W. L.; Tables of the first 250 Bernoulli numbers. Trans. Cambridge Phil. Soc. 12 (1873), 384-391.
  • Peters, J. and Stein, J., Matematische Tafeln. Revised Russian Edition, 1968, Moscow.

Crossrefs

Programs

  • Maple
    seq(floor(abs(bernoulli(2*n+2)/bernoulli(2*n))),n=0..200); # Robert Israel, Jun 27 2018
  • Mathematica
    Table[Floor[Abs[BernoulliB[2*n + 2]/BernoulliB[2*n]]], {n, 0, 60}] (* T. D. Noe, Jun 27 2013 *)
  • PARI
    a(n) = floor(abs(bernfrac(2*n+2)/bernfrac(2*n))) \\ Michel Marcus, Jun 27 2013

Formula

a(n) = floor( (n+1)*(2*n+1)/(2*Pi^2)) (conjectured). - Bill McEachen, Dec 08 2021
A002939(n+1)*B(2*n)/B(2*(n+1)) = -(2*Pi)^2*(1 + O(1/4^n)). See the StackExchange link. - Peter Luschny, Dec 08 2021