A047872 a(n) = floor(abs(B(2*n + 2)/B(2*n))) where B(n) is the n-th Bernoulli number.
0, 0, 0, 1, 2, 3, 4, 6, 7, 9, 11, 13, 16, 19, 22, 25, 28, 31, 35, 39, 43, 47, 52, 57, 62, 67, 72, 78, 83, 89, 95, 102, 108, 115, 122, 129, 136, 144, 152, 160, 168, 176, 185, 193, 202, 212, 221, 231, 240, 250, 260, 271, 281, 292, 303, 314, 326, 337, 349, 361, 373
Offset: 0
Examples
a(3) = floor(abs(B(4)/B(3))) = floor((1/30)/(1/42)) = floor(7/5) = floor(1.4) = 1. a(249) = floor(abs(B(250)/B(249))) = 6319.
References
- Glaisher, J. W. L.; Tables of the first 250 Bernoulli numbers. Trans. Cambridge Phil. Soc. 12 (1873), 384-391.
- Peters, J. and Stein, J., Matematische Tafeln. Revised Russian Edition, 1968, Moscow.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Maths StackExchange, Bernoulli numbers and Pi^2, 2019.
- Index entries for sequences related to Bernoulli numbers.
Programs
-
Maple
seq(floor(abs(bernoulli(2*n+2)/bernoulli(2*n))),n=0..200); # Robert Israel, Jun 27 2018
-
Mathematica
Table[Floor[Abs[BernoulliB[2*n + 2]/BernoulliB[2*n]]], {n, 0, 60}] (* T. D. Noe, Jun 27 2013 *)
-
PARI
a(n) = floor(abs(bernfrac(2*n+2)/bernfrac(2*n))) \\ Michel Marcus, Jun 27 2013
Formula
a(n) = floor( (n+1)*(2*n+1)/(2*Pi^2)) (conjectured). - Bill McEachen, Dec 08 2021
A002939(n+1)*B(2*n)/B(2*(n+1)) = -(2*Pi)^2*(1 + O(1/4^n)). See the StackExchange link. - Peter Luschny, Dec 08 2021