A047888 Rectangular array of numbers a(n,k) = number of permutations of n things with longest increasing subsequence of length <= k (1 <= k <= oo), read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 14, 6, 2, 1, 1, 42, 23, 6, 2, 1, 1, 132, 103, 24, 6, 2, 1, 1, 429, 513, 119, 24, 6, 2, 1, 1, 1430, 2761, 694, 120, 24, 6, 2, 1, 1, 4862, 15767, 4582, 719, 120, 24, 6, 2, 1, 1, 16796, 94359, 33324, 5003, 720, 120, 24, 6, 2, 1, 1, 58786, 586590
Offset: 1
Examples
Square array a(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 2, 2, 2, 2, ... 1, 5, 6, 6, 6, 6, ... 1, 14, 23, 24, 24, 24, ... 1, 42, 103, 119, 120, 120, ... 1, 132, 513, 694, 719, 720, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..44, flattened
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory A 53, no. 2, (1990), 257-285.
Programs
-
Mathematica
rows = 12; h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]] ; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, rows}] // Accumulate; A047888 = Table[T[n], {n, 1, rows}]; Table[A047888[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 06 2014, after Alois P. Heinz *)
-
PARI
b(n, k) = { my(x = 'x + O('x^(2*n))); sum(i = 0, n, x^(2*i+k)/(i!*(i+k)!)); }; u(n, k) = { my(v = Vec(matdet(matrix(k, k, i, j, b(n, abs(i-j)))))); return(vector((#v-1)\2, i, v[2*i+1] * i!^2)); }; A(n, k) = { my(m = [;]); for (i = 1, k, m = concat(m, u(n, i)~)); return(m); }; A(6, 6) \\ Gheorghe Coserea, Feb 02 2016
Extensions
More terms from Naohiro Nomoto, Mar 01 2002
Comments