cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047888 Rectangular array of numbers a(n,k) = number of permutations of n things with longest increasing subsequence of length <= k (1 <= k <= oo), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 14, 6, 2, 1, 1, 42, 23, 6, 2, 1, 1, 132, 103, 24, 6, 2, 1, 1, 429, 513, 119, 24, 6, 2, 1, 1, 1430, 2761, 694, 120, 24, 6, 2, 1, 1, 4862, 15767, 4582, 719, 120, 24, 6, 2, 1, 1, 16796, 94359, 33324, 5003, 720, 120, 24, 6, 2, 1, 1, 58786, 586590
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu), N. J. A. Sloane

Keywords

Comments

Also a(n,k) is the dimension of the space of SL(k)-invariants in V^n tensor (V^*)^n, where V is the standard k-dimensional representation of SL(k) and V^* is its dual. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

Examples

			Square array a(n,k) begins:
  1,   1,    1,    1,    1,    1, ...
  1,   2,    2,    2,    2,    2, ...
  1,   5,    6,    6,    6,    6, ...
  1,  14,   23,   24,   24,   24, ...
  1,  42,  103,  119,  120,  120, ...
  1, 132,  513,  694,  719,  720, ...
		

Crossrefs

Rows of the array are partial sums of A047874. Cf. A047887.
Subarray of A214015.

Programs

  • Mathematica
    rows = 12; h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]] ; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, rows}] // Accumulate; A047888 = Table[T[n], {n, 1, rows}]; Table[A047888[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 06 2014, after Alois P. Heinz *)
  • PARI
    b(n, k) = {
      my(x = 'x + O('x^(2*n)));
      sum(i = 0, n, x^(2*i+k)/(i!*(i+k)!));
    };
    u(n, k) = {
      my(v = Vec(matdet(matrix(k, k, i, j, b(n, abs(i-j))))));
      return(vector((#v-1)\2, i, v[2*i+1] * i!^2));
    };
    A(n, k) = {
      my(m = [;]);
      for (i = 1, k, m = concat(m, u(n, i)~));
      return(m);
    };
    A(6, 6)  \\ Gheorghe Coserea, Feb 02 2016

Extensions

More terms from Naohiro Nomoto, Mar 01 2002