A047920 Triangular array formed from successive differences of factorial numbers.
1, 1, 0, 2, 1, 1, 6, 4, 3, 2, 24, 18, 14, 11, 9, 120, 96, 78, 64, 53, 44, 720, 600, 504, 426, 362, 309, 265, 5040, 4320, 3720, 3216, 2790, 2428, 2119, 1854, 40320, 35280, 30960, 27240, 24024, 21234, 18806, 16687, 14833, 362880, 322560
Offset: 0
Examples
Triangle begins: 1; 1, 0; 2, 1, 1; 6, 4, 3, 2; 24, 18, 14, 11, 9; 120, 96, 78, 64, 53, 44; ... The left-hand column is the factorial numbers (A000142). The other numbers in the row are calculated by subtracting the numbers in the previous row. For example, row 4 is 6, 4, 3, 2, so row 5 is 4! = 24, 24 - 6 = 18, 18 - 4 = 14, 14 - 3 = 11, 11 - 2 = 9. - _Michael B. Porter_, Aug 05 2016
References
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 176, Table 5.3. [From Emeric Deutsch, Apr 21 2009]
Links
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- E. Deutsch and S. Elizalde, The largest and the smallest fixed points of permutations, arXiv:0904.2792 [math.CO], 2009.
- J. D. H. Dickson, Discussion of two double series arising from the number of terms in determinants of certain forms, Proc. London Math. Soc., 10 (1879), 120-122. [Annotated scanned copy]
- J. D. H. Dickson, Discussion of two double series arising from the number of terms in determinants of certain forms, Proc. London Math. Soc., 10 (1879), 120-122.
- Ira M. Gessel, Symmetric inclusion-exclusion, Séminaire Lotharingien de Combinatoire, B54b (2005).
- Peter Kagey, Ranking and Unranking Restricted Permutations, arXiv:2210.17021 [math.CO], 2022.
- Index entries for sequences related to factorial numbers
Crossrefs
Programs
-
Haskell
a047920 n k = a047920_tabl !! n !! k a047920_row n = a047920_tabl !! n a047920_tabl = map fst $ iterate e ([1], 1) where e (row, n) = (scanl (-) (n * head row) row, n + 1) -- Reinhard Zumkeller, Mar 05 2012
-
Maple
d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(n-k, j)*d[n-j], j = 0 .. n-k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jul 17 2009 # second Maple program: T:= proc(n, k) option remember; `if`(k=0, n!, T(n, k-1)-T(n-1, k-1)) end: seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Sep 01 2021
-
Mathematica
t[n_, k_] = Sum[(-1)^j*Binomial[k, j]*(n-j)!, {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* Jean-François Alcover, May 17 2011, after Philippe Deléham *) T[n_, k_] := n! Hypergeometric1F1[-k, -n, -1]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 28 2024 *)
-
PARI
row(n) = vector(n+1, k, k--; sum(j=0, n, (-1)^j * binomial(k, j)*(n-j)!)); \\ Michel Marcus, Sep 04 2021
Formula
t(n, k) = t(n, k-1) - t(n-1, k-1) = t(n, k+1) - t(n-1, k) = n*t(n-1, k) + k*t(n-2, k-1) = (n-1)*t(n-1, k-1) + (k-1)*t(n-2, k-2) = A060475(n, k)*(n-k)!. - Henry Bottomley, Mar 16 2001
T(n, k) = Sum_{j>=0} (-1)^j * binomial(k, j)*(n-j)!. - Philippe Deléham, May 29 2005
T(n,k) = Sum_{j=0..n-k} d(n-j)*binomial(n-k,j), where d(i)=A000166(i) are the derangement numbers. - Emeric Deutsch, Jul 17 2009
Sum_{k=0..n} (k+1)*T(n,k) = A155521(n+1). - Emeric Deutsch, Jul 18 2009
T(n, k) = n!*hypergeom([-k], [-n], -1). - Peter Luschny, Jul 28 2024
Comments