A047946 a(n) = 5*F(n)^2 + 3*(-1)^n where F(n) are the Fibonacci numbers A000045.
3, 2, 8, 17, 48, 122, 323, 842, 2208, 5777, 15128, 39602, 103683, 271442, 710648, 1860497, 4870848, 12752042, 33385283, 87403802, 228826128, 599074577, 1568397608, 4106118242, 10749957123, 28143753122, 73681302248, 192900153617, 505019158608, 1322157322202
Offset: 0
Links
- Mansur Boase, Problem 1558, Mathematics Magazine, Vol. 71, No. 4 (1998), p. 316; Primes in a Recursively Defined Sequence, Solution to Problem 1558 by TAMUK Problem Solvers, ibid., Vol. 72, No. 4 (1999), pp. 330-331.
- Tanya Khovanova, Divisibility of Odd Fibonaccis, 2008.
- Claudio de Jesús Pita Ruiz Velasco, On s-Fibonomials, Journal of Integer Sequences, Vol. 14 (2011), Article 11.3.7.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Crossrefs
Programs
-
Mathematica
Table[LucasL[n]^2 - (-1)^n, {n, 0, 30}] (* Amiram Eldar, Feb 02 2022 *)
-
PARI
a(n)=5*fibonacci(n)^2+3*(-1)^n
-
Python
from sympy import fibonacci def A047946(n): return 5*fibonacci(n)**2+(-3 if n&1 else 3) # Chai Wah Wu, Jul 29 2022
Formula
a(n) = F(3n)/F(n), n>0.
a(n) = 2*a(n-1)+2*a(n-2)-a(n-3).
a(n) = 3a(n-1)-a(n-2)+5(-1)^n.
a(n) = A005248(n) + (-1)^n.
G.f.: ( 3-4*x-2*x^2 ) / ( (1+x)*(x^2-3*x+1) ).
For n>0, the linear recurrence for the sequence F(n*k)^2 has signature (a(n),a(n),-1) for n odd, and (a(n),-a(n), 1) for n even. For example, the linear recurrence for the sequence F(3*k)^2 has signature (17, 17, -1) (conjectured). - Greg Dresden, Aug 30 2021
a(n) = Lucas(n)^2 - (-1)^n. - Amiram Eldar, Feb 02 2022
Extensions
Entry improved by comments from Michael Somos.
Comments