cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047946 a(n) = 5*F(n)^2 + 3*(-1)^n where F(n) are the Fibonacci numbers A000045.

Original entry on oeis.org

3, 2, 8, 17, 48, 122, 323, 842, 2208, 5777, 15128, 39602, 103683, 271442, 710648, 1860497, 4870848, 12752042, 33385283, 87403802, 228826128, 599074577, 1568397608, 4106118242, 10749957123, 28143753122, 73681302248, 192900153617, 505019158608, 1322157322202
Offset: 0

Views

Author

John W. Layman, May 21 1999

Keywords

Comments

Form the matrix A=[1,1,1;2,1,0;1,0,0]. a(n)=trace(A^n). - Paul Barry, Sep 22 2004
The set of prime divisors of elements of this sequence with the exception of 3 is the set of primes that do not divide odd Fibonacci numbers. - Tanya Khovanova, May 19 2008
If a(n) is prime then n is a power of 3 (Boase, 1998). The only values of k not exceeding 12 for which a(3^k) is prime are 0 and 1. - Amiram Eldar, Jun 19 2022

Crossrefs

Second row of array A028412.
Cf. A133247 (prime numbers p such that no odd Fibonacci number is divisible by p).

Programs

  • Mathematica
    Table[LucasL[n]^2 - (-1)^n, {n, 0, 30}] (* Amiram Eldar, Feb 02 2022 *)
  • PARI
    a(n)=5*fibonacci(n)^2+3*(-1)^n
    
  • Python
    from sympy import fibonacci
    def A047946(n): return 5*fibonacci(n)**2+(-3 if n&1 else 3) # Chai Wah Wu, Jul 29 2022

Formula

a(n) = F(3n)/F(n), n>0.
a(n) = 2*a(n-1)+2*a(n-2)-a(n-3).
a(n) = 3a(n-1)-a(n-2)+5(-1)^n.
a(n) = A005248(n) + (-1)^n.
G.f.: ( 3-4*x-2*x^2 ) / ( (1+x)*(x^2-3*x+1) ).
for n>0 a(n) = A000045(3n)/A000045(n) - Benoit Cloitre, Aug 30 2003
For n>0, the linear recurrence for the sequence F(n*k)^2 has signature (a(n),a(n),-1) for n odd, and (a(n),-a(n), 1) for n even. For example, the linear recurrence for the sequence F(3*k)^2 has signature (17, 17, -1) (conjectured). - Greg Dresden, Aug 30 2021
a(n) = Lucas(n)^2 - (-1)^n. - Amiram Eldar, Feb 02 2022

Extensions

Entry improved by comments from Michael Somos.