A047966 a(n) = Sum_{ d divides n } q(d), where q(d) = A000009 = number of partitions of d into distinct parts.
1, 2, 3, 4, 4, 8, 6, 10, 11, 15, 13, 25, 19, 29, 33, 42, 39, 62, 55, 81, 84, 103, 105, 153, 146, 185, 203, 253, 257, 344, 341, 432, 463, 552, 594, 747, 761, 920, 1003, 1200, 1261, 1537, 1611, 1921, 2089, 2410, 2591, 3095, 3270, 3815, 4138, 4769, 5121, 5972, 6394, 7367, 7974, 9066, 9793, 11305, 12077, 13736, 14940
Offset: 1
Keywords
Examples
The a(6) = 8 uniform partitions are (6), (51), (42), (33), (321), (222), (2211), (111111). - _Gus Wiseman_, Apr 16 2018
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- A. David Christopher and M. Davamani Christober, Relatively Prime Uniform Partitions, Gen. Math. Notes, Vol. 13, No. 2, December, 2012, pp.1-12.
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add( `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n) end: a:= n-> add(b(d), d=divisors(n)): seq(a(n), n=1..100); # Alois P. Heinz, Jul 11 2016
-
Mathematica
b[n_] := b[n] = If[n==0, 1, Sum[DivisorSum[j, If[OddQ[#], #, 0]&]*b[n-j], {j, 1, n}]/n]; a[n_] := DivisorSum[n, b]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 06 2016 after Alois P. Heinz *) Table[DivisorSum[n,PartitionsQ],{n,20}] (* Gus Wiseman, Apr 16 2018 *)
-
PARI
N = 66; q='q+O('q^N); D(q)=eta(q^2)/eta(q); \\ A000009 Vec( sum(e=1,N,D(q^e)-1) ) \\ Joerg Arndt, Mar 27 2014
Formula
G.f.: Sum_{k>0} (-1+Product_{i>0} (1+z^(k*i))). - Vladeta Jovovic, Jun 22 2003
G.f.: Sum_{k>=1} q(k)*x^k/(1 - x^k), where q() = A000009. - Ilya Gutkovskiy, Jun 20 2018
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 27 2018
Comments