A047972 Distance of n-th prime to nearest square.
1, 1, 1, 2, 2, 3, 1, 3, 2, 4, 5, 1, 5, 6, 2, 4, 5, 3, 3, 7, 8, 2, 2, 8, 3, 1, 3, 7, 9, 8, 6, 10, 7, 5, 5, 7, 12, 6, 2, 4, 10, 12, 5, 3, 1, 3, 14, 2, 2, 4, 8, 14, 15, 5, 1, 7, 13, 15, 12, 8, 6, 4, 17, 13, 11, 7, 7, 13, 14, 12, 8, 2, 6, 12, 18, 17, 11, 3, 1, 9, 19, 20, 10, 8, 2, 2, 8, 16, 20, 21
Offset: 1
Examples
For 13, 9 is the preceding square, 16 is the succeeding. 13-9 = 4, 16-13 is 3, so the distance is 3.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A047973.
Programs
-
Mathematica
a[n_] := (p = Prime[n]; ns = p+1; While[ !IntegerQ[ Sqrt[ns++]]]; ps = p-1; While[ !IntegerQ[ Sqrt[ps--]]]; Min[ ns-p-1, p-ps-1]); Table[a[n], {n, 1, 90}] (* Jean-François Alcover, Nov 18 2011 *) Table[Apply[Min, Abs[p - Through[{Floor, Ceiling}[Sqrt[p]]]^2]], {p, Prime[Range[90]]}] (* Jan Mangaldan, May 07 2014 *) Min[Abs[#-Through[{Floor,Ceiling}[Sqrt[#]]]^2]]&/@Prime[Range[100]] (* More concise version of program immediately above *) (* Harvey P. Dale, Dec 04 2019 *) Rest[Table[With[{s=Floor[Sqrt[p]]},Abs[p-Nearest[Range[s-2,s+2]^2,p]]],{p,Prime[ Range[ 100]]}]//Flatten] (* Harvey P. Dale, Apr 27 2022 *)
-
Python
from sympy import integer_nthroot, prime def A047972(n): p = prime(n) a = integer_nthroot(p,2)[0] return min(p-a**2,(a+1)**2-p) # Chai Wah Wu, Apr 03 2021
Formula
For each prime, find the closest square (preceding or succeeding); subtract, take absolute value.
Comments