A047983 Number of integers less than n but with the same number of divisors.
0, 0, 1, 0, 2, 0, 3, 1, 1, 2, 4, 0, 5, 3, 4, 0, 6, 1, 7, 2, 5, 6, 8, 0, 2, 7, 8, 3, 9, 1, 10, 4, 9, 10, 11, 0, 11, 12, 13, 2, 12, 3, 13, 5, 6, 14, 14, 0, 3, 7, 15, 8, 15, 4, 16, 5, 17, 18, 16, 0, 17, 19, 9, 0, 20, 6, 18, 10, 21, 7, 19, 1, 20, 22, 11, 12, 23, 8, 21, 1, 1, 24, 22, 2, 25, 26, 27
Offset: 1
Examples
f(10) = 2 because tau(10) = 4 and also tau(6) = tau(8) = 4.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Simon Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2 (1999), Article 99.1.2.
- Simon Colton, HR - Automatic Theory Formation in Pure Mathematics, 1998-1999. [Wayback Machine link]
Programs
-
Haskell
a047983 n = length [x | x <- [1..n-1], a000005 x == a000005 n] -- Reinhard Zumkeller, Nov 06 2011
-
Mathematica
a[n_] := With[{tau = DivisorSigma[0, n]}, Length[ Select[ Range[n-1], DivisorSigma[0, #] == tau & ]]]; Table[a[n], {n, 1, 87}] (* Jean-François Alcover, Nov 30 2011 *) Module[{nn=90,ds},ds=DivisorSigma[0,Range[nn]];Table[Count[Take[ds,n], ds[[n]]]- 1,{n,nn}]] (* Harvey P. Dale, Feb 16 2014 *)
-
PARI
A047983(n) = {local(d);d=numdiv(n);sum(k=1,n-1,(numdiv(k)==d))} \\ Michael B. Porter, Mar 01 2010
-
Python
from sympy import divisor_count as D def a(n): return sum([1 for k in range(1, n) if D(k) == D(n)]) # Indranil Ghosh, Apr 30 2017
Formula
f(n) = |{k < n : tau(k) = tau(n)}|.
a(n) = A067004(n) - 1. - Amiram Eldar, Feb 04 2025
Comments