cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A007416 The minimal numbers: sequence A005179 arranged in increasing order.

Original entry on oeis.org

1, 2, 4, 6, 12, 16, 24, 36, 48, 60, 64, 120, 144, 180, 192, 240, 360, 576, 720, 840, 900, 960, 1024, 1260, 1296, 1680, 2520, 2880, 3072, 3600, 4096, 5040, 5184, 6300, 6480, 6720, 7560, 9216, 10080, 12288, 14400, 15120, 15360, 20160, 25200, 25920, 27720, 32400, 36864, 44100
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that there is no x < k such that A000005(x) = A000005(k). - Benoit Cloitre, Apr 28 2002
A047983(a(n)) = 0. - Reinhard Zumkeller, Nov 03 2015
Subsequence of A025487. If some m in A025487 is the first term in that sequence having its number of divisors, m is in this sequence. - David A. Corneth, Aug 31 2019

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 86.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A025487; A002182 is a subsequence.
Cf. A000005, A047983, A166721 (subsequence of squares).
Cf. A053212 and A064787 (the sequence {A000005(a(n))} and its inverse permutation).

Programs

  • Haskell
    a007416 n = a007416_list !! (n-1)
    a007416_list = f 1 [] where
       f x ts = if tau `elem` ts then f (x + 1) ts else x : f (x + 1) (tau:ts)
                where tau = a000005' x
    -- Reinhard Zumkeller, Apr 18 2015
  • Maple
    for n from 1 to 10^5 do
      t:= numtheory:-tau(n);
      if not assigned(B[t]) then B[t]:= n fi;
    od:
    sort(map(op,[entries(B)]));# Robert Israel, Nov 11 2015
  • Mathematica
    A007416 = Reap[ For[ s = 1, s <= 10^5, s++, If[ Abs[ Product[ DivisorSigma[0, i] - DivisorSigma[0, s], {i, 1, s-1}]] > 0, Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Nov 19 2012, after Pari *)
  • PARI
    for(s=1,10^6,if(abs(prod(i=1,s-1,numdiv(i)-numdiv(s)))>0,print1(s,",")))
    
  • PARI
    is(n)=my(d=numdiv(n));for(i=1,n-1,if(numdiv(i)==d, return(0))); 1 \\ Charles R Greathouse IV, Feb 20 2013
    
  • PARI
    A283980(n,f=factor(n))=prod(i=1, #f~, my(p=f[i, 1]); if(p==2, 6, nextprime(p+1))^f[i, 2])
    A025487do(e) = my(v=List([1, 2]), i=2, u = 2^e, t); while(v[i] != u, if(2*v[i] <= u, listput(v, 2*v[i]); t = A283980(v[i]); if(t <= u, listput(v, t))); i++); Set(v)
    winnow(v,lim=v[#v])=my(m=Map(),u=List()); for(i=1,#v, if(v[i]>lim, break); my(t=numdiv(v[i])); if(!mapisdefined(m,t), mapput(m,t,0); listput(u,v[i]))); m=0; Vec(u)
    list(lim)=winnow(A025487do(logint(lim\1-1,2)+1),lim) \\ Charles R Greathouse IV, Nov 17 2022
    

A067004 Number of numbers <= n with same number of divisors as n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 5, 1, 6, 4, 5, 1, 7, 2, 8, 3, 6, 7, 9, 1, 3, 8, 9, 4, 10, 2, 11, 5, 10, 11, 12, 1, 12, 13, 14, 3, 13, 4, 14, 6, 7, 15, 15, 1, 4, 8, 16, 9, 16, 5, 17, 6, 18, 19, 17, 1, 18, 20, 10, 1, 21, 7, 19, 11, 22, 8, 20, 2, 21, 23, 12, 13, 24, 9, 22, 2, 2, 25, 23, 3, 26, 27
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2001

Keywords

Examples

			a(10)=3 since 6,8,10 each have four divisors. a(11)=5 since 2,3,5,7,11 each have two divisors.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    R:= Vector(N):
    for n from 1 to N do
      v:= numtheory:-tau(n);
      R[v]:= R[v]+1;
      A[n]:= R[v];
    od:
    seq(A[n],n=1..N); # Robert Israel, May 04 2015
  • Mathematica
    b[_] = 0;
    a[n_] := a[n] = With[{t = DivisorSigma[0, n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
  • PARI
    a(n)=my(d=numdiv(n)); sum(k=1,n,numdiv(k)==d) \\ Charles R Greathouse IV, Sep 02 2015

Formula

Ordinal transform of A000005. - Franklin T. Adams-Watters, Aug 28 2006
a(A000040(n)^(p-1)) = n if p is prime. - Robert Israel, May 04 2015

A335097 Number of integers less than n with the same number of prime factors (counted with multiplicity) as n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 0, 2, 3, 4, 1, 5, 4, 5, 0, 6, 2, 7, 3, 6, 7, 8, 1, 8, 9, 4, 5, 9, 6, 10, 0, 10, 11, 12, 2, 11, 13, 14, 3, 12, 7, 13, 8, 9, 15, 14, 1, 16, 10, 17, 11, 15, 4, 18, 5, 19, 20, 16, 6, 17, 21, 12, 0, 22, 13, 18, 14, 23, 15, 19, 2, 20, 24, 16, 17, 25, 18, 21, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2020

Keywords

Examples

			a(10) = 3 because bigomega(10) = 2 and also bigomega(4) = bigomega(6) = bigomega(9) = 2.
		

Crossrefs

Cf. A000079 (positions of 0's), A001222, A047983, A058933, A067004, A322838, A334655.

Programs

  • Maple
    A:= NULL:
    for n from 1 to 100 do
      t:= numtheory:-bigomega(n);
      if not assigned(R[t]) then
        A:= A,0;
        R[t]:= 1;
       else
        A:= A, R[t];
        R[t]:= R[t]+1;
       fi
    od:
    A; # Robert Israel, Oct 24 2021
  • Mathematica
    Table[Length[Select[Range[n - 1], PrimeOmega[#] == PrimeOmega[n] &]], {n, 80}]
  • PARI
    a(n)={my(t=bigomega(n)); sum(k=1, n-1, bigomega(k)==t)} \\ Andrew Howroyd, Oct 31 2020
    
  • Python
    from math import prod, isqrt
    from sympy import isprime, primepi, primerange, integer_nthroot, primeomega
    def A335097(n):
        if n==1: return 0
        if isprime(n): return primepi(n)-1
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,primeomega(n)))-1) # Chai Wah Wu, Aug 28 2024

Formula

a(n) = |{j < n : bigomega(j) = bigomega(n)}|.
a(n) = A058933(n) - 1.

A334655 Number of integers less than n with the same number of distinct prime factors as n.

Original entry on oeis.org

0, 0, 1, 2, 3, 0, 4, 5, 6, 1, 7, 2, 8, 3, 4, 9, 10, 5, 11, 6, 7, 8, 12, 9, 13, 10, 14, 11, 15, 0, 16, 17, 12, 13, 14, 15, 18, 16, 17, 18, 19, 1, 20, 19, 20, 21, 21, 22, 22, 23, 24, 25, 23, 26, 27, 28, 29, 30, 24, 2, 25, 31, 32, 26, 33, 3, 27, 34, 35, 4, 28, 36, 29, 37, 38, 39, 40, 5, 30, 41
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2020

Keywords

Examples

			a(12) = 2 because omega(12) = 2 and also omega(6) = omega(10) = 2.
		

Crossrefs

Cf. A001221, A002110 (positions of 0's), A047983, A067003, A067004, A322837, A322841, A335097.

Programs

  • Maple
    R:= NULL:
    for n from 1 to 100 do
      w:= nops(numtheory:-factorset(n));
      if assigned(V[w]) then V[w]:= V[w]+1 else V[w]:= 1 fi;
      R:= R, V[w]-1
    od:
    R; # Robert Israel, Feb 25 2024
  • Mathematica
    Table[Length[Select[Range[n - 1], PrimeNu[#] == PrimeNu[n] &]], {n, 80}]
  • PARI
    a(n)={my(t=omega(n)); sum(k=1, n-1, omega(k)==t)} \\ Andrew Howroyd, Oct 31 2020

Formula

a(n) = |{j < n : omega(j) = omega(n)}|.
a(n) = A067003(n) - 1.

A339514 Number of subsets of {1..n} whose elements have the same number of divisors.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 19, 21, 23, 27, 43, 44, 76, 84, 100, 101, 165, 167, 295, 299, 331, 395, 651, 652, 656, 784, 1040, 1048, 1560, 1562, 2586, 2602, 3114, 4138, 6186, 6187, 8235, 12331, 20523, 20527, 24623, 24631, 32823, 32855, 32919, 49303, 65687, 65688
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 07 2020

Keywords

Examples

			a(8) = 21 subsets: {}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {2, 3}, {2, 5}, {2, 7}, {3, 5}, {3, 7}, {5, 7}, {6, 8}, {2, 3, 5}, {2, 3, 7}, {2, 5, 7}, {3, 5, 7} and {2, 3, 5, 7}.
		

Crossrefs

Programs

  • Python
    from sympy import divisors
    def test(n):
        if n<2: return n-1
        return len(divisors(n))
    def a(n):
        tests = [test(i) for i in range(n+1)]
        return sum(2**tests.count(v)-1 for v in set(tests))
    print([a(n) for n in range(49)]) # Michael S. Branicky, Dec 07 2020

Formula

a(0) = 1, a(n) = a(n-1) + 2^A047983(n). - Sebastian Karlsson, Dec 26 2020

Extensions

a(25)-a(48) from Michael S. Branicky, Dec 07 2020

A337557 Number of integers less than n with the same number of odd divisors as n.

Original entry on oeis.org

0, 1, 0, 2, 1, 2, 3, 3, 0, 4, 5, 6, 7, 8, 0, 4, 9, 1, 10, 11, 1, 12, 13, 14, 2, 15, 2, 16, 17, 3, 18, 5, 4, 19, 5, 3, 20, 21, 6, 22, 23, 7, 24, 25, 0, 26, 27, 28, 4, 5, 8, 29, 30, 9, 10, 31, 11, 32, 33, 12, 34, 35, 1, 6, 13, 14, 36, 37, 15, 16, 38, 6, 39, 40, 2, 41, 17, 18, 42, 43
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2020

Keywords

Examples

			a(10) = 4 because A001227(10) = 2 and also A001227(3) = A001227(5) = A001227(6) = A001227(7) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[n - 1], Sum[Mod[d, 2], {d, Divisors[#]}] == Sum[Mod[d, 2], {d, Divisors[n]}] &]], {n, 80}]
  • PARI
    a(n)={my(t=numdiv(n/2^valuation(n, 2))); sum(k=1, n-1, numdiv(k/2^valuation(k, 2))==t)} \\ Andrew Howroyd, Oct 31 2020
    
  • PARI
    first(n) = { my(m = Map(), res = vector(n)); for(i = 1, n, q = numdiv(i >> valuation(i, 2)); if(mapisdefined(m, q), res[i] = mapget(m, q); mapput(m, q, res[i]+1); , mapput(m, q, 1) ) ); res } \\ David A. Corneth, Oct 31 2020

Formula

a(n) = |{j < n : A001227(j) = A001227(n)}|.

A338483 a(n) is the smallest number having n smaller numbers with the same number of divisors.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205, 206, 209, 213
Offset: 1

Views

Author

Ivan N. Ianakiev, Oct 30 2020

Keywords

Comments

Inspired by A047983.
Are there prime terms greater than 31?

Examples

			The smallest number having two smaller numbers (2 and 3) with the same number of divisors is 5, so a(2) is 5.
		

Crossrefs

Programs

  • Maple
    N:= 500: # for terms before the first term > N
    T:= map(numtheory:-tau, [$1..N]):
    M:= max(T):
    V:= Vector(M):
    for n from 1 to N do
      v:= T[n];
      V[v]:= V[v]+1;
      if not assigned(R[V[v]]) then R[V[v]]:= n fi
    od:
    for nn from 1 while assigned(R[nn]) do od:
    seq(R[i],i=2..nn-1); # Robert Israel, Oct 30 2020
  • Mathematica
    f[n_]:=With[{tau=DivisorSigma[0,n]},Length[Select[Range[n-1],DivisorSigma[0,#]==tau&]]];t=Table[f[n],{n,1,300}]; a[n_]:=FirstPosition[t,n]; Rest[a/@Range[0,65]]//Flatten (* f(n) by Jean-François Alcover at A047983 *)
  • PARI
    f(n) = {my(d=numdiv(n)); sum(k=1, n-1, (numdiv(k)==d))} \\ A047983
    a(n) = my(k=1); while (f(k)!= n, k++); k; \\ Michel Marcus, Oct 30 2020

Formula

A047983(a(n)) = n. - Rémy Sigrist, Dec 06 2020

A338569 Number of integers less than n with the same number of ordered factorizations as n.

Original entry on oeis.org

0, 1, 2, 0, 3, 0, 4, 0, 1, 1, 5, 0, 6, 2, 3, 1, 7, 2, 8, 3, 4, 5, 9, 0, 2, 6, 1, 4, 10, 0, 11, 0, 7, 8, 9, 0, 12, 10, 11, 1, 13, 1, 14, 5, 6, 12, 15, 0, 3, 7, 13, 8, 16, 2, 14, 3, 15, 16, 17, 0, 18, 17, 9, 0, 18, 2, 19, 10, 19, 3, 20, 0, 21, 20, 11, 12, 21, 4, 22, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 02 2020

Keywords

Examples

			a(14) = 2 because A074206(14) = 3 and also A074206(6) = A074206(10) = 3.
		

Crossrefs

Programs

Formula

a(n) = |{j < n : A074206(j) = A074206(n)}|.

A377734 Number of integers less than n that have the same smallest prime factor as n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 4, 0, 5, 0, 6, 2, 7, 0, 8, 0, 9, 3, 10, 0, 11, 1, 12, 4, 13, 0, 14, 0, 15, 5, 16, 2, 17, 0, 18, 6, 19, 0, 20, 0, 21, 7, 22, 0, 23, 1, 24, 8, 25, 0, 26, 3, 27, 9, 28, 0, 29, 0, 30, 10, 31, 4, 32, 0, 33, 11, 34, 0, 35, 0, 36, 12, 37, 2, 38, 0, 39
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Range[n - 1], If[# == 1, 1, FactorInteger[#][[1, 1]]] == If[n == 1, 1, FactorInteger[n][[1, 1]]] &]], {n, 80}]
    seq[len_] := Module[{t = Table[FactorInteger[n][[1,1]], {n, 1, len}], s = Table[0, {len}]}, Do[s[[i]] = Count[t[[1;;i-1]], t[[i]]], {i, 1, len}]; s]; seq[80] (* Amiram Eldar, Nov 21 2024 *)
  • PARI
    a(n) = if (n>1, my(p=vecmin(factor(n)[,1])); sum(k=2, n-1, p == vecmin(factor(k)[,1])), 0); \\ Michel Marcus, Nov 16 2024

Formula

a(n) = |{j < n : lpf(j) = lpf(n)}|.
a(n) = A078898(n) - 1.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Sum_{k>=1} (A038110(k)/A038111(k))^2 = 0.2847976823663... . - Amiram Eldar, Nov 21 2024

A347494 a(n) is the number of instances where tau(k)|tau(n); n>=1, kA000005.

Original entry on oeis.org

0, 1, 2, 1, 3, 4, 4, 6, 2, 7, 5, 8, 6, 10, 11, 1, 7, 11, 8, 13, 14, 15, 9, 17, 3, 17, 18, 16, 10, 21, 11, 19, 21, 22, 23, 4, 12, 25, 26, 29, 13, 31, 14, 23, 24, 29, 15, 17, 4, 27, 31, 28, 16, 37, 33, 39, 34, 35, 17, 50, 18, 38, 32, 1, 39, 46, 19, 34, 41, 49, 20, 59
Offset: 1

Views

Author

David James Sycamore, Aug 31 2021

Keywords

Comments

a(n) >= 1, for n >= 2; equality only when n = 2^(p-1) for any prime p. More generally, if p is prime(m), q any prime, and n=p^(q-1) then tau(n) = q, and the only numbers k < m such that tau(k)|tau(n) are 1 and q. Every prime < p contributes 1 to the count of a(n), and so does 1 itself, therefore a(n) = m-1+1 = m; see formula. Since for a given m, this holds for all primes q, it follows that every m > 0 appears in the sequence infinitely many times.

Examples

			a(1) = 0 because there is no k < 1 such that tau(k)|tau(1).
a(2) = 1, since there is only one instance of tau(k)|tau(2), namely k=1.
a(3) = 2, since there are two instances of tau(k)|tau(3), namely k=1 and k=2.
a(4) = 3, since there is only one instance of tau(k)|tau(4), namely k=1, etc.
		

Crossrefs

Programs

  • Mathematica
    With[{s = DivisorSigma[0, Range[72]]}, Array[Count[Mod[#2, s[[Range[#1 - 1]]]], 0] & @@ {#, s[[#]]} &, Length[s] - 1, 2]] (* Michael De Vlieger, Sep 09 2021 *)
  • PARI
    first(n) = {my(l = List(), res = vector(n)); for(i = 1, n, nd = numdiv(i); if(nd > #l, for(i = #l + 1, nd, listput(l, 0) ) ); d = divisors(nd); for(j = 1, #d, res[i] += l[d[j]] ); l[nd]++; ); res } \\ David A. Corneth, Sep 03 2021

Formula

a(prime(m)^(q-1)) = m for m >= 1 and any prime q.
Showing 1-10 of 12 results. Next