cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A053212 Number of divisors of the minimal numbers (A007416).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 9, 10, 12, 7, 16, 15, 18, 14, 20, 24, 21, 30, 32, 27, 28, 11, 36, 25, 40, 48, 42, 22, 45, 13, 60, 35, 54, 50, 56, 64, 33, 72, 26, 63, 80, 44, 84, 90, 70, 96, 75, 39, 81, 100, 66, 49, 108, 120, 112, 52, 17, 55, 128, 126, 88, 144, 105, 160
Offset: 1

Views

Author

Asher Auel, Dec 16 1999

Keywords

Comments

A permutation of the natural numbers.

Crossrefs

Inverse permutation to A064787.

Programs

  • Haskell
    a053212 = a000005' . a007416  -- Reinhard Zumkeller, Apr 18 2015
  • Mathematica
    Reap[For[n = 1, n <= 10^5, n++, tau = DivisorSigma[0, n]; If[Abs[Product[DivisorSigma[0, k] - tau, {k, 1, n - 1}]] > 0, Print[tau]; Sow[tau]]]][[2, 1]] (* Jean-François Alcover, Jan 16 2013 *)

Formula

a(n) = A000005(A007416(n)). - Omar E. Pol, Dec 26 2008

Extensions

More terms from Naohiro Nomoto, Apr 03 2001

A152245 Primes p where |p-m| = 1, where m is any of the smallest positive integers with their number of divisors. (m belongs to sequence A007416.)

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 37, 47, 59, 61, 179, 181, 191, 193, 239, 241, 359, 577, 719, 839, 1259, 1297, 2521, 2879, 5039, 6299, 6301, 6481, 6719, 7559, 7561, 10079, 12289, 14401, 15121, 15359, 15361, 20161, 25919, 32401, 44101, 45361, 55439, 55441
Offset: 1

Views

Author

Leroy Quet, Nov 30 2008

Keywords

Examples

			The smallest positive integer with 8 divisors is 24. 24 - 1 = 23 is prime. But 24 + 1 = 25 is composite. So 23 is in the sequence, while 25 is not.
		

Crossrefs

Extensions

Extended by Ray Chandler, Dec 05 2008

A152246 Composites c where |c-m| = 1, where m is any of the smallest positive integers with their number of divisors. (m belongs to sequence A007416.)

Original entry on oeis.org

15, 25, 35, 49, 63, 65, 119, 121, 143, 145, 361, 575, 721, 841, 899, 901, 959, 961, 1023, 1025, 1261, 1295, 1679, 1681, 2519, 2881, 3071, 3073, 3599, 3601, 4095, 4097, 5041, 5183, 5185, 6479, 6721, 9215, 9217, 10081, 12287, 14399, 15119, 20159, 25199
Offset: 1

Views

Author

Leroy Quet, Nov 30 2008

Keywords

Examples

			The smallest positive integer with 8 divisors is 24. 24 - 1 = 23 is prime. But 24 + 1 = 25 is composite. So 25 is in the sequence, while 23 is not.
		

Crossrefs

Extensions

Extended by Ray Chandler, Dec 05 2008

A256259 Sum of divisors of the minimal numbers (A007416).

Original entry on oeis.org

1, 3, 7, 12, 28, 31, 60, 91, 124, 168, 127, 360, 403, 546, 508, 744, 1170, 1651, 2418, 2880, 2821, 3048, 2047, 4368, 3751, 5952, 9360, 9906, 8188, 12493, 8191, 19344, 15367, 22568, 22506, 24384, 28800, 26611, 39312, 32764, 51181, 59520, 49128, 79248, 99944, 92202, 112320, 116281, 106483, 160797
Offset: 1

Views

Author

Omar E. Pol, Apr 20 2015

Keywords

Comments

Has a symmetric representation in the same way as A000203 and all its subsequences.

Crossrefs

Programs

  • Mathematica
    (* The d-th element in list minDiv[n, b] is the smallest numbers k<=n with exactly d<=b divisors, otherwise it is zero. Computation stops as soon as either inequality fails. *)
    minDiv[n_, b_] :=
    Module[{list = Array[0 &, b], k = 1, d},
      While[k <= n, d = DivisorSigma[0, k];
       If[d <= b && list[[d]] == 0, list[[d]] = k];
       If[d <= b, k++, k = n + 2]]; list]
    a256259[n_, b_] :=
    Map[DivisorSigma[1, #] &, Sort[Select[minDiv[n, b], # != 0 &]]]
    a256259[100000, 300] (* computes the first 60 elements of the sequence *)
    (* Hartmut F. W. Hoft, Apr 27 2015 *)

Formula

a(n) = A000203(A007416(n)).

A354530 Numbers k such that k^2 is a minimal number; numbers k whose square is in A007416.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 24, 30, 32, 36, 60, 64, 72, 96, 120, 180, 192, 210, 216, 256, 288, 360, 420, 480, 512, 576, 768, 840, 864, 900, 960, 1080, 1260, 1440, 1536, 1680, 1728, 1800, 2048, 2304, 2520, 2880, 3360, 3840, 4320, 4608, 4620, 5400, 6144, 6300, 6720, 6912, 7200, 7560
Offset: 1

Views

Author

Jianing Song, Aug 16 2022

Keywords

Comments

Numbers k such that there is no m < k^2 such that d(m) = d(k^2), d = A000005. Since only squares have an odd number of divisors, also numbers k such that there is no m < k such that d(m^2) = d(k^2).

Examples

			8 is a term since 8^2 = 64 has 7 divisors and no smaller number (smaller square) has that many divisors.
		

Crossrefs

Square root of A166721. Also A016017 or A071571 sorted.
Cf. also A166722.

Programs

  • PARI
    lista(nn) = {v = []; for (n=1, nn, d = numdiv(n^2); if (! vecsearch(v, d), print1(n, ", "); v = Set(concat(v, d))); ); } \\ from Michel Marcus's program for A166721

Formula

d(a(n)^2) = A166722(n).

A053213 Differences between the minimal numbers (A007416).

Original entry on oeis.org

1, 2, 2, 6, 4, 8, 12, 12, 12, 4, 56, 24, 36, 12, 48, 120, 216, 144, 120, 60, 60, 64, 236, 36, 384, 840, 360, 192, 528, 496, 944, 144, 1116, 180, 240, 840, 1656, 864, 2208, 2112, 720, 240, 4800, 5040, 720, 1800, 4680, 4464, 7236, 1260, 720, 576, 3744, 5040, 5040
Offset: 1

Views

Author

Asher Auel, Dec 16 1999

Keywords

Crossrefs

Extensions

More terms from Naohiro Nomoto, Jun 23 2001

A212654 LCM of the first few p-smooth numbers for a prime number p if in A007416; otherwise smallest number with same number of divisors (see example for details).

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 60, 120, 360, 720, 3600, 5040, 25200, 55440, 277200, 720720, 3603600, 10810800, 21621600, 122522400, 367567200, 2327925600, 6983776800, 48886437600, 97772875200, 293318625600, 3226504881600, 6746328388800, 74209612276800, 195643523275200
Offset: 1

Views

Author

J. Lowell, Feb 14 2013

Keywords

Comments

What is the smallest number in this sequence divisible by 27?

Examples

			Term after 720 is 3600 because 720 is a 5-smooth number divisible by all 5-smooth numbers less than 25, and LCM of 720 and 25 is 3600.Term after 3600 is 5040 because 3600 is a 5-smooth number; divisible by all 5-smooth numbers less than 27, and LCM of 3600 and 27 is 10800, but 10800 has 60 divisors and smallest number with 60 divisors is 5040.
		

A005179 Smallest number with exactly n divisors.

Original entry on oeis.org

1, 2, 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60, 4096, 192, 144, 120, 65536, 180, 262144, 240, 576, 3072, 4194304, 360, 1296, 12288, 900, 960, 268435456, 720, 1073741824, 840, 9216, 196608, 5184, 1260, 68719476736, 786432, 36864, 1680, 1099511627776, 2880
Offset: 1

Views

Author

N. J. A. Sloane, David Singmaster

Keywords

Comments

A number n is called ordinary iff a(n)=A037019(n). Brown shows that the ordinary numbers have density 1 and all squarefree numbers are ordinary. See A072066 for the extraordinary or exceptional numbers. - M. F. Hasler, Oct 14 2014
All terms are in A025487. Therefore, a(n) is even for n > 1. - David A. Corneth, Jun 23 2017 [corrected by Charles R Greathouse IV, Jul 05 2023]

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 52.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 86.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 89.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a005179 n = succ $ fromJust $ elemIndex n $ map a000005 [1..]
    -- Reinhard Zumkeller, Apr 01 2011
    
  • Maple
    A005179_list := proc(SearchLimit, ListLength)
    local L, m, i, d; m := 1;
    L := array(1..ListLength,[seq(0,i=1..ListLength)]);
    for i from 1 to SearchLimit while m <= ListLength do
      d := numtheory[tau](i);
      if d <= ListLength and 0 = L[d] then L[d] := i;
      m := m + 1; fi
    od:
    print(L) end: A005179_list(65537,18);
    # If a '0' appears in the list the search limit has to be increased. - Peter Luschny, Mar 09 2011
    # alternative
    # Construct list of ordered lists of factorizations of n with
    # minimum divisors mind.
    # Returns a list with A001055(n) entries if called with mind=2.
    # Example: print(ofact(10^3,2))
    ofact := proc(n,mind)
        local fcts,d,rec,r ;
        fcts := [] ;
        for d in numtheory[divisors](n) do
            if d >= mind then
                if d = n then
                    fcts := [op(fcts),[n]] ;
                else
                    # recursive call supposed one more factor fixed now
                    rec := procname(n/d,max(d,mind)) ;
                    for r in rec do
                        fcts := [op(fcts),[d,op(r)]] ;
                    end do:
                end if;
            end if;
        end do:
        return fcts ;
    end proc:
    A005179 := proc(n)
        local Lexp,a,eList,cand,maxxrt ;
        if n = 1 then
            return 1;
        end if;
        Lexp := ofact(n,2) ;
        a := 0 ;
        for eList in Lexp do
            maxxrt := ListTools[Reverse](eList) ;
            cand := mul( ithprime(i)^ ( op(i,maxxrt)-1),i=1..nops(maxxrt)) ;
            if a =0 or cand < a then
                a := cand ;
            end if;
        end do:
        a ;
    end proc:
    seq(A005179(n),n=1..40) ; # R. J. Mathar, Jun 06 2024
  • Mathematica
    a = Table[ 0, {43} ]; Do[ d = Length[ Divisors[ n ]]; If[ d < 44 && a[[ d ]] == 0, a[[ d]] = n], {n, 1, 1099511627776} ]; a
    (* Second program: *)
    Function[s, Map[Lookup[s, #] &, Range[First@ Complement[Range@ Max@ #, #] - 1]] &@ Keys@ s]@ Map[First, KeySort@ PositionIndex@ Table[DivisorSigma[0, n], {n, 10^7}]] (* Michael De Vlieger, Dec 11 2016, Version 10 *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
    a[n_] := Module[{e = f[n] - 1}, Min[Times @@@ ((Prime[Range[Length[#], 1, -1]]^#) & /@ e)]]; Array[a, 100] (* Amiram Eldar, Jul 26 2025 using the function f by T. D. Noe at A162247 *)
  • PARI
    (prodR(n,maxf)=my(dfs=divisors(n),a=[],r); for(i=2,#dfs, if( dfs[i]<=maxf, if(dfs[i]==n, a=concat(a,[[n]]), r=prodR(n/dfs[i],min(dfs[i],maxf)); for(j=1,#r, a=concat(a,[concat(dfs[i],r[j])]))))); a); A005179(n)=my(pf=prodR(n,n),a=1,b); for(i=1,#pf, b=prod(j=1,length(pf[i]),prime(j)^(pf[i][j]-1)); if(bA005179(n)", ")) \\ R. J. Mathar, May 26 2008, edited by M. F. Hasler, Oct 11 2014
    
  • Python
    from math import prod
    from sympy import isprime, divisors, prime
    def A005179(n):
        def mult_factors(n):
            if isprime(n):
                return [(n,)]
            c = []
            for d in divisors(n,generator=True):
                if 1Chai Wah Wu, Aug 17 2024

Formula

a(p) = 2^(p-1) for primes p: a(A000040(n)) = A061286(n); a(p^2) = 6^(p-1) for primes p: a(A001248(n)) = A061234(n); a(p*q) = 2^(q-1)*3^(p-1) for primes p<=q: a(A001358(n)) = A096932(n); a(p*m*q) = 2^(q-1) * 3^(m-1) * 5^(p-1) for primes pA005179(A007304(n)) = A061299(n). - Reinhard Zumkeller, Jul 15 2004 [This can be continued to arbitrarily many distinct prime factors since no numbers in A072066 (called "exceptional" or "extraordinary") are squarefree. - Jianing Song, Jul 18 2025]
a(p^n) = (2*3...*p_n)^(p-1) for p > log p_n / log 2. Unpublished proof from Andrzej Schinzel. - Thomas Ordowski, Jul 22 2005
If p is a prime and n=p^k then a(p^k)=(2*3*...*s_k)^(p-1) where (s_k) is the numbers of the form q^(p^j) for every q and j>=0, according to Grost (1968), Theorem 4. For example, if p=2 then a(2^k) is the product of the first k members of the A050376 sequence: number of the form q^(2^j) for j>=0, according to Ramanujan (1915). - Thomas Ordowski, Aug 30 2005
a(2^k) = A037992(k). - Thomas Ordowski, Aug 30 2005
a(n) <= A037019(n) with equality except for n in A072066. - M. F. Hasler, Jun 15 2022

Extensions

More terms from David W. Wilson

A370820 Number of positive integers that are a divisor of some prime index of n.

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 4, 3, 3, 1, 2, 2, 4, 2, 3, 2, 3, 2, 2, 4, 2, 3, 4, 3, 2, 1, 3, 2, 4, 2, 6, 4, 4, 2, 2, 3, 4, 2, 3, 3, 4, 2, 3, 2, 3, 4, 5, 2, 3, 3, 4, 4, 2, 3, 6, 2, 3, 1, 4, 3, 2, 2, 4, 4, 6, 2, 4, 6, 3, 4, 4, 4, 4, 2, 2, 2, 2, 3, 3, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Mar 15 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
This sequence contains all nonnegative integers. In particular, a(prime(n)!) = n.

Examples

			2045 has prime indices {3,80} with combined divisors {1,2,3,4,5,8,10,16,20,40,80}, so a(2045) = 11. In fact, 2045 is the least number with this property.
		

Crossrefs

a(prime(n)) = A000005(n).
Positions of ones are A000079 except for 1.
a(n!) = A000720(n).
a(prime(n)!) = a(prime(A005179(n))) = n.
Counting prime factors instead of divisors gives A303975.
Positions of 2's are A371127.
Position of first appearance of n is A371131(n), sorted version A371181.
A001221 counts distinct prime factors.
A003963 gives product of prime indices.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Union@@Divisors/@PrimePi/@First/@If[n==1,{},FactorInteger[n]]],{n,100}]
  • PARI
    a(n) = my(list=List(), f=factor(n)); for (i=1, #f~, fordiv(primepi(f[i,1]), d, listput(list, d))); #Set(list); \\ Michel Marcus, May 02 2024

A047983 Number of integers less than n but with the same number of divisors.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 1, 1, 2, 4, 0, 5, 3, 4, 0, 6, 1, 7, 2, 5, 6, 8, 0, 2, 7, 8, 3, 9, 1, 10, 4, 9, 10, 11, 0, 11, 12, 13, 2, 12, 3, 13, 5, 6, 14, 14, 0, 3, 7, 15, 8, 15, 4, 16, 5, 17, 18, 16, 0, 17, 19, 9, 0, 20, 6, 18, 10, 21, 7, 19, 1, 20, 22, 11, 12, 23, 8, 21, 1, 1, 24, 22, 2, 25, 26, 27
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Invented by the HR concept formation program.

Examples

			f(10) = 2 because tau(10) = 4 and also tau(6) = tau(8) = 4.
		

Crossrefs

Position of the 0's form A007416.

Programs

  • Haskell
    a047983 n = length [x | x <- [1..n-1], a000005 x == a000005 n]
    -- Reinhard Zumkeller, Nov 06 2011
    
  • Mathematica
    a[n_] := With[{tau = DivisorSigma[0, n]}, Length[ Select[ Range[n-1], DivisorSigma[0, #] == tau & ]]]; Table[a[n], {n, 1, 87}] (* Jean-François Alcover, Nov 30 2011 *)
    Module[{nn=90,ds},ds=DivisorSigma[0,Range[nn]];Table[Count[Take[ds,n], ds[[n]]]- 1,{n,nn}]] (* Harvey P. Dale, Feb 16 2014 *)
  • PARI
    A047983(n) = {local(d);d=numdiv(n);sum(k=1,n-1,(numdiv(k)==d))} \\ Michael B. Porter, Mar 01 2010
    
  • Python
    from sympy import divisor_count as D
    def a(n): return sum([1 for k in range(1, n) if D(k) == D(n)]) # Indranil Ghosh, Apr 30 2017

Formula

f(n) = |{k < n : tau(k) = tau(n)}|.
a(n) = A067004(n) - 1. - Amiram Eldar, Feb 04 2025
Showing 1-10 of 52 results. Next