cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A064787 Inverse permutation to A053212.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 11, 7, 8, 9, 23, 10, 31, 15, 13, 12, 58, 14, 74, 16, 18, 29, 122, 17, 25, 40, 21, 22, 224, 19, 267, 20, 38, 69, 33, 24, 453, 89, 49, 26, 636, 28, 737, 43, 30, 141, 995, 27, 53, 35, 84, 57, 1523, 34, 59, 36, 108, 257, 2244, 32, 2528, 310, 41, 37, 77, 52
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2001

Keywords

Comments

a(n) is the index of A005179(n) in A007416; equivalently, a(n) is the number of minimal numbers (numbers in A007416) that are <= A005179(n). - Jianing Song, Aug 16 2022

Examples

			a(23) = 122 because d(n) (A000005(n)) takes 121 different values before it first reaches 23 (at n = 2^22).
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a064787 = (+ 1) . fromJust . (`elemIndex` a053212_list)
    -- Reinhard Zumkeller, Apr 18 2015

Extensions

More terms from Naohiro Nomoto, Oct 31 2001
More terms from David Wasserman, Aug 14 2002

A007416 The minimal numbers: sequence A005179 arranged in increasing order.

Original entry on oeis.org

1, 2, 4, 6, 12, 16, 24, 36, 48, 60, 64, 120, 144, 180, 192, 240, 360, 576, 720, 840, 900, 960, 1024, 1260, 1296, 1680, 2520, 2880, 3072, 3600, 4096, 5040, 5184, 6300, 6480, 6720, 7560, 9216, 10080, 12288, 14400, 15120, 15360, 20160, 25200, 25920, 27720, 32400, 36864, 44100
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that there is no x < k such that A000005(x) = A000005(k). - Benoit Cloitre, Apr 28 2002
A047983(a(n)) = 0. - Reinhard Zumkeller, Nov 03 2015
Subsequence of A025487. If some m in A025487 is the first term in that sequence having its number of divisors, m is in this sequence. - David A. Corneth, Aug 31 2019

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 86.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A025487; A002182 is a subsequence.
Cf. A000005, A047983, A166721 (subsequence of squares).
Cf. A053212 and A064787 (the sequence {A000005(a(n))} and its inverse permutation).

Programs

  • Haskell
    a007416 n = a007416_list !! (n-1)
    a007416_list = f 1 [] where
       f x ts = if tau `elem` ts then f (x + 1) ts else x : f (x + 1) (tau:ts)
                where tau = a000005' x
    -- Reinhard Zumkeller, Apr 18 2015
  • Maple
    for n from 1 to 10^5 do
      t:= numtheory:-tau(n);
      if not assigned(B[t]) then B[t]:= n fi;
    od:
    sort(map(op,[entries(B)]));# Robert Israel, Nov 11 2015
  • Mathematica
    A007416 = Reap[ For[ s = 1, s <= 10^5, s++, If[ Abs[ Product[ DivisorSigma[0, i] - DivisorSigma[0, s], {i, 1, s-1}]] > 0, Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Nov 19 2012, after Pari *)
  • PARI
    for(s=1,10^6,if(abs(prod(i=1,s-1,numdiv(i)-numdiv(s)))>0,print1(s,",")))
    
  • PARI
    is(n)=my(d=numdiv(n));for(i=1,n-1,if(numdiv(i)==d, return(0))); 1 \\ Charles R Greathouse IV, Feb 20 2013
    
  • PARI
    A283980(n,f=factor(n))=prod(i=1, #f~, my(p=f[i, 1]); if(p==2, 6, nextprime(p+1))^f[i, 2])
    A025487do(e) = my(v=List([1, 2]), i=2, u = 2^e, t); while(v[i] != u, if(2*v[i] <= u, listput(v, 2*v[i]); t = A283980(v[i]); if(t <= u, listput(v, t))); i++); Set(v)
    winnow(v,lim=v[#v])=my(m=Map(),u=List()); for(i=1,#v, if(v[i]>lim, break); my(t=numdiv(v[i])); if(!mapisdefined(m,t), mapput(m,t,0); listput(u,v[i]))); m=0; Vec(u)
    list(lim)=winnow(A025487do(logint(lim\1-1,2)+1),lim) \\ Charles R Greathouse IV, Nov 17 2022
    

A090128 Distinct values of sigma(k), the sum of divisors, in order of appearance as k grows.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 28, 14, 24, 31, 39, 20, 42, 32, 36, 60, 40, 56, 30, 72, 63, 48, 54, 91, 38, 90, 96, 44, 84, 78, 124, 57, 93, 98, 120, 80, 168, 62, 104, 127, 144, 68, 126, 195, 74, 114, 140, 186, 121, 224, 108, 132, 180, 234, 112, 128, 252, 171, 156, 217
Offset: 1

Views

Author

Labos Elemer, Jan 16 2004

Keywords

Comments

Constructed by reading A000203 and deleting values that already appeared earlier: A000203(15)=24 is dropped because equal to A000203(14). A000203(17)=18 is dropped because equal to A000203(10) etc. - R. J. Mathar, May 27 2024

Crossrefs

Cf. A000203, A002191 (terms in ascending order).

Programs

  • Mathematica
    t = Table[DivisorSigma[1, w], {w, 100}]; u = Union[t]; uu = Union@ Table[ Min[ Flatten[ Position[t, u[[j]]]]], {j, Length[u]}]; Table[ t[[uu[[j]]]], {j, Length[uu]}]
    DeleteDuplicates[DivisorSigma[1,Range[100]]] (* Harvey P. Dale, Dec 01 2018 *)

A256259 Sum of divisors of the minimal numbers (A007416).

Original entry on oeis.org

1, 3, 7, 12, 28, 31, 60, 91, 124, 168, 127, 360, 403, 546, 508, 744, 1170, 1651, 2418, 2880, 2821, 3048, 2047, 4368, 3751, 5952, 9360, 9906, 8188, 12493, 8191, 19344, 15367, 22568, 22506, 24384, 28800, 26611, 39312, 32764, 51181, 59520, 49128, 79248, 99944, 92202, 112320, 116281, 106483, 160797
Offset: 1

Views

Author

Omar E. Pol, Apr 20 2015

Keywords

Comments

Has a symmetric representation in the same way as A000203 and all its subsequences.

Crossrefs

Programs

  • Mathematica
    (* The d-th element in list minDiv[n, b] is the smallest numbers k<=n with exactly d<=b divisors, otherwise it is zero. Computation stops as soon as either inequality fails. *)
    minDiv[n_, b_] :=
    Module[{list = Array[0 &, b], k = 1, d},
      While[k <= n, d = DivisorSigma[0, k];
       If[d <= b && list[[d]] == 0, list[[d]] = k];
       If[d <= b, k++, k = n + 2]]; list]
    a256259[n_, b_] :=
    Map[DivisorSigma[1, #] &, Sort[Select[minDiv[n, b], # != 0 &]]]
    a256259[100000, 300] (* computes the first 60 elements of the sequence *)
    (* Hartmut F. W. Hoft, Apr 27 2015 *)

Formula

a(n) = A000203(A007416(n)).

A053213 Differences between the minimal numbers (A007416).

Original entry on oeis.org

1, 2, 2, 6, 4, 8, 12, 12, 12, 4, 56, 24, 36, 12, 48, 120, 216, 144, 120, 60, 60, 64, 236, 36, 384, 840, 360, 192, 528, 496, 944, 144, 1116, 180, 240, 840, 1656, 864, 2208, 2112, 720, 240, 4800, 5040, 720, 1800, 4680, 4464, 7236, 1260, 720, 576, 3744, 5040, 5040
Offset: 1

Views

Author

Asher Auel, Dec 16 1999

Keywords

Crossrefs

Extensions

More terms from Naohiro Nomoto, Jun 23 2001
Showing 1-5 of 5 results.