cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048102 Numbers k such that if k = Product p_i^e_i then p_i = e_i for all i.

Original entry on oeis.org

1, 4, 27, 108, 3125, 12500, 84375, 337500, 823543, 3294172, 22235661, 88942644, 2573571875, 10294287500, 69486440625, 277945762500, 285311670611, 1141246682444, 7703415106497, 30813660425988, 302875106592253, 891598970659375, 1211500426369012, 3566395882637500
Offset: 1

Views

Author

Keywords

Examples

			3^3*5^5 = 84375.
		

Crossrefs

Programs

  • Haskell
    import Data.Set (empty, fromList, deleteFindMin, union)
    import qualified Data.Set as Set (null, map)
    a048102 n = a048102_list !! (n-1)
    a048102_list = 1 : f empty [1] a051674_list where
      f s ys pps'@(pp:pps)
        | Set.null s = f (fromList (map (* pp) ys)) (pp:ys) pps
        | pp < m     = f (s `union` Set.map (* pp) s `union`
                          fromList (map (* pp) ys)) ys pps
        | otherwise  = m : f s' (m:ys) pps'
        where (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Jan 21 2012
    
  • PARI
    isok(n) = my(f = factor(n)); for (k=1, #f~, if (f[k,1] != f[k,2], return(0))); 1; \\ Michel Marcus, Apr 29 2016

Formula

A027748(a(n),k) = A124010(a(n),k) for k = 1 .. A001221(a(n)). - Reinhard Zumkeller, Jan 21 2012
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/p^p) = 1.2967126856... - Amiram Eldar, Oct 13 2020

Extensions

More terms from Naohiro Nomoto, Jun 28 2001