cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A365634 The number of divisors of n that are terms of A048102.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == p, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == f[i,1], 2, 1));}

Formula

Multiplicative with a(p^e) = 1 + [e = p], where [] is the Iverson bracket.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + (p-1)/p^(p+1)) = 1.153074089009... .

A365635 The largest divisor of n that is a term of A048102.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 27, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 27, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[e < p, 0, p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, f[i, 1]^f[i,1]));}

Formula

Multiplicative with a(p^e) = 1 if e < p and p^p otherwise.
a(n) <= n with equality if and only if n is in A048102.
a(n) >= 1 with equality if and only if n is in A048103.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + (p^p-1)/p^(p*s)).

A051674 a(n) = prime(n)^prime(n).

Original entry on oeis.org

4, 27, 3125, 823543, 285311670611, 302875106592253, 827240261886336764177, 1978419655660313589123979, 20880467999847912034355032910567, 2567686153161211134561828214731016126483469, 17069174130723235958610643029059314756044734431
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that bigomega(k)^(bigomega(k)) = k, where bigomega = A001222. - Lekraj Beedassy, Aug 21 2004
Positive k such that k' = k, where k' is the arithmetic derivative of k. - T. D. Noe, Oct 12 2004
David Beckwith proposes (in the AMM reference): "Let n be a positive integer and let p be a prime number. Prove that (p^p) | n! implies that (p^(p + 1)) | n!". - Jonathan Vos Post, Feb 20 2006
Subsequence of A100716; A003415(m*a(n)) = A129283(m)*a(n), especially A003415(a(n)) = a(n). - Reinhard Zumkeller, Apr 07 2007
A168036(a(n)) = 0. - Reinhard Zumkeller, May 22 2015

Examples

			a(1) = 2^2 = 4.
a(2) = 3^3 = 27.
a(3) = 5^5 = 3125.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 740 pp. 95; 312, Ellipses Paris 2004.

Crossrefs

Cf. A000040, A000312, A003415 (arithmetic derivative of n), A129150, A129151, A129152, A048102, A072873 (multiplicative closure), A104126.
Subsequence of A100717; A203908(a(n)) = 0.
Subsequence of A097764.
Cf. A168036, A094289 (decimal expansion of Sum(1/p^p)).

Programs

Formula

a(n) = A000312(A000040(n)). - Altug Alkan, Sep 01 2016
Sum_{n>=1} 1/a(n) = A094289. - Amiram Eldar, Oct 13 2020

A048103 Numbers not divisible by p^p for any prime p.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Keywords

Comments

If a(n) = Product p_i^e_i then p_i > e_i for all i.
Complement of A100716; A129251(a(n)) = 0. - Reinhard Zumkeller, Apr 07 2007
Density is 0.72199023441955... = Product_{p>=2} (1 - p^-p) where p runs over the primes. - Charles R Greathouse IV, Jan 25 2012
A027748(a(n),k) <= A124010(a(n),k), 1<=k<=A001221(a(n)). - Reinhard Zumkeller, Apr 28 2012
Range of A276086. Also numbers not divisible by m^m for any natural number m > 1. - Antti Karttunen, Nov 18 2024

Examples

			6 = 2^1 * 3^1 is OK but 12 = 2^2 * 3^1 is not.
625 = 5^4 is present because it is not divisible by 5^5.
		

Crossrefs

Complement: A100716.
Positions of 0's in A129251, A342023, A376418, positions of 1's in A327936, A342007, A359550 (characteristic function).
Cf. A048102, A048104, A051674 (p^p), A054743, A054744, A377982 (a left inverse, partial sums of char. fun, see also A328402).
Cf. A276086 (permutation of this sequence, see also A376411, A376413).
Subsequences: A002110, A005117, A006862, A024451 (after its initial 0), A057588, A099308 (after its initial 0), A276092, A328387, A328832, A359547, A370114, A371083, A373848, A377871, A377992.
Disjoint union of {1}, A327934 and A358215.
Also A276078 is a subsequence, from which this differs for the first time at n=451 where a(451)=625, while that value is missing from A276078.

Programs

  • Haskell
    a048103 n = a048103_list !! (n-1)
    a048103_list = filter (\x -> and $
       zipWith (>) (a027748_row x) (map toInteger $ a124010_row x)) [1..]
    -- Reinhard Zumkeller, Apr 28 2012
    
  • Mathematica
    {1}~Join~Select[Range@ 120, Times @@ Boole@ Map[First@ # > Last@ # &, FactorInteger@ #] > 0 &] (* Michael De Vlieger, Aug 19 2016 *)
  • PARI
    isok(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,1] <= f[i,2], return(0))); return(1); \\ Michel Marcus, Nov 13 2020
    
  • PARI
    A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); }; \\ (A359550 is the characteristic function for A048103) - Antti Karttunen, Nov 18 2024
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A048103_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(map(lambda d:d[1]A048103_list = list(islice(A048103_gen(),30)) # Chai Wah Wu, Jan 05 2023
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A048103 (ZERO-POS 1 1 A129251))
    ;; Antti Karttunen, Aug 18 2016
    

Formula

a(n) ~ kn with k = 1/Product_{p>=2}(1 - p^-p) = Product_{p>=2}(1 + 1/(p^p - 1)) = 1.3850602852..., where the product is over all primes p. - Charles R Greathouse IV, Jan 25 2012
For n >= 1, A377982(a(n)) = n. - Antti Karttunen, Nov 18 2024

Extensions

More terms from James Sellers, Apr 22 2000

A072873 Numbers k such that Sum_i ( e(i)/p(i) ) is an integer, where the prime factorization of k is Product_i ( p(i)^e(i) ).

Original entry on oeis.org

1, 4, 16, 27, 64, 108, 256, 432, 729, 1024, 1728, 2916, 3125, 4096, 6912, 11664, 12500, 16384, 19683, 27648, 46656, 50000, 65536, 78732, 84375, 110592, 186624, 200000, 262144, 314928, 337500, 442368, 531441, 746496, 800000, 823543
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002

Keywords

Comments

Also, numbers k such that k divides k', the arithmetic derivative of k. As shown by Ufnarovski and Ahlander, all terms in this sequence have the form Product_{j=1..r} (pj^pj)^ej, where the pj are primes. The quotient k'/k equals Sum_{j=1..r} ej. - T. D. Noe, Jan 04 2006
Multiplicative closure of A051674. - Reinhard Zumkeller, Jan 21 2012
The number of terms < 10^k: 2, 5, 9, 15, 25, 36, 52, 73, 98, 128, 167, 213, 270, 338, 421, 517, 632, 768, 920, 1101, ..., . - Robert G. Wilson v, Jan 19 2016

Examples

			108 is in the sequence because 108 = 2^2*3^3 and 2/2 + 3/3 = 2 is an integer.
		

References

Crossrefs

Programs

  • Haskell
    import Data.Set (empty, fromList, deleteFindMin, union)
    import qualified Data.Set as Set (null)
    a072873 n = a072873_list !! (n-1)
    a072873_list = 1 : h empty [1] a051674_list where
       h s mcs xs'@(x:xs)
        | Set.null s || x < m = h (s `union` fromList (map (* x) mcs)) mcs xs
        | otherwise = m : h (s' `union` fromList (map (* m) $ init (m:mcs)))
                            (m:mcs) xs'
        where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jan 21 2012
    
  • Mathematica
    Select[Range[1000000],IntegerQ[Total[#[[2]]/#[[1]]&/@FactorInteger[#]]]&] (* Harvey P. Dale, Jul 04 2014 *)
    lst = {}; Do[n = 2^e2*3^e3*5^e5*7^e7; If[n < 10^11, AppendTo[lst, n]], {e2, 0, 36, 2}, {e3, 0, 23, 3}, {e5, 0, 15, 5}, {e7, 0, 13, 7}]; Take[ Sort@ lst, 40] (* Robert G. Wilson v, Jan 19 2016 *)
  • PARI
    is(n)=my(f=factor(n)); for(i=1,#f~,if(f[i,2]%f[i,1], return(0))); 1 \\ Charles R Greathouse IV, Oct 28 2014
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A072873_gen(startvalue=1): # generator of terms >= startvalue
        return (k for k in count(max(startvalue,1)) if not any(e%p for p, e in factorint(k).items()))
    A072873_list = list(islice(A072873_gen(),20)) # Chai Wah Wu, Sep 15 2023

Formula

A124010(a(n),k) mod A027748(a(n),k) = 0 for k = 1 .. A001221(a(n)). - Reinhard Zumkeller, Jan 21 2012
Sum_{n>=1} 1/a(n) = Product_{p prime} p^p/(p^p-1) = 1.38506028520448917638... - Amiram Eldar, Sep 27 2020

Extensions

More terms from T. D. Noe, Jan 04 2006

A008478 Integers of the form Product p_j^k_j = Product k_j^p_j; p_j in A000040.

Original entry on oeis.org

1, 4, 16, 27, 72, 108, 432, 800, 3125, 6272, 12500, 21600, 30375, 50000, 84375, 121500, 169344, 225000, 247808, 337500, 486000, 750141, 823543, 1350000, 1384448, 3000564, 3294172, 6690816, 12002256, 13176688, 19600000, 22235661, 37380096, 37879808, 59295096, 88942644
Offset: 1

Views

Author

Keywords

Comments

Fixed points of A008477.
a(3) = 16 is the only term of the form p^q with p <> q. - Bernard Schott, Mar 28 2021

Examples

			16 = 2^4 = 4^2.
27 = 3^3.
108 = 2^2*3^3.
6272 = 2^7*7^2.
121500 = 2^2 * 3^5*5^3.
		

Crossrefs

Some subsequences: p_i^p_i (A051674), Product_i {p_i^p_i} (A048102), Product_(j,k)(p_j^p_k * p_k^p_j) with p_j < p_k (A082949) (see examples).

Programs

  • Mathematica
    f[n_] := Product[{p, e} = pe; e^p, {pe, FactorInteger[n]}];
    Reap[For[n = 1, n <= 10^8, n++, If[f[n] == n, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Mar 29 2021 *)
  • PARI
    for(n=2,10^8,if(n==prod(i=1,omega(n), component(component(factor(n),2),i)^component(component(factor(n),1),i)),print1(n,",")))

Extensions

More terms from David W. Wilson
a(34)-a(36) from Jean-François Alcover, Mar 29 2021

A100717 Numbers k having a prime divisor p such that p^p is the highest power of p that divides k.

Original entry on oeis.org

4, 12, 20, 27, 28, 36, 44, 52, 54, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 135, 140, 148, 156, 164, 172, 180, 188, 189, 196, 204, 212, 216, 220, 228, 236, 244, 252, 260, 268, 270, 276, 284, 292, 297, 300, 308, 316, 324, 332, 340, 348, 351, 356, 364, 372
Offset: 1

Views

Author

Leroy Quet, Dec 10 2004

Keywords

Comments

For each prime p, the sequence includes all k*p^p for k such that gcd(k,p)=1. - T. D. Noe
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/p^p + 1/p^(p+1)) = 0.14682429539560371215... . - Amiram Eldar, Jun 25 2022

Examples

			54 is included because 3^3, but not 3^4, divides 54.
		

Crossrefs

Subsequences: A051674, A048102 \ {1}.

Programs

  • Haskell
    a100717 n = a100717_list !! (n-1)
    a100717_list = filter ((== 0) . a203908) [1..]
    -- Reinhard Zumkeller, Dec 24 2013
  • Mathematica
    fQ[n_] := Union[ Table[ #[[1]] == #[[2]]] & /@ FactorInteger[n]][[ -1]] == True; Select[ Range[2, 375], fQ[ # ] &] (* Robert G. Wilson v, Dec 14 2004 *)

Formula

A203908(a(n)) = 0. - Reinhard Zumkeller, Dec 24 2013

Extensions

More terms from T. D. Noe and Robert G. Wilson v, Dec 14 2004

A048104 If n = Product p_i^e_i (e_i >= 1) then for some i, p_i > e_i and for some j, p_j < e_j.

Original entry on oeis.org

24, 40, 48, 56, 72, 80, 88, 96, 104, 112, 120, 136, 144, 152, 160, 162, 168, 176, 184, 192, 200, 208, 224, 232, 240, 248, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 405, 408, 416, 424, 440, 448, 456, 464, 472
Offset: 1

Views

Author

Keywords

Comments

The asymptotic density of this sequence is 1 - Product_{p prime} (1-1/p^(p+1)) = 0.13585792767780221591... . - Amiram Eldar, Feb 14 2023
Verified up to a(120) = 1000, except for a(16) = 162 and a(55) = 486, every a(n) is also the order of an isomorphism class for which there exists at least one nonabelian nilpotent group G such that |Aut(G)|/a(n) is nonintegral. Within the same range there are 26 group orders not in a(n), which, except for 3^4*2^3 = 648, all have the form 3^3*m or 5^3*k, with m and k being prime, squarefree, or nonsquarefree. - Miles Englezou, Jul 16 2024

Examples

			48 = 2^4*3^1 is a term but 12 = 2^2*3^1 is not.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], AnyTrue[(f = FactorInteger[#]), First[#1] > Last[#1] &] && AnyTrue[f, First[#1] < Last[#1] &] &] (* Amiram Eldar, Nov 13 2020 *)
  • PARI
    isok(n) = my(f=factor(n), b1=0, b2=0); for (i=1, #f~, if (f[i,1] < f[i,2], b1=1, if (f[i,1] > f[i,2], b2=1))); return(b1 && b2); \\ Michel Marcus, Nov 13 2020

Extensions

More terms from Reiner Martin, Jul 07 2001

A272818 Numbers such that (sum + product) of all their prime factors equals (sum + product) of all exponents in their prime factorization.

Original entry on oeis.org

1, 4, 27, 72, 96, 108, 486, 800, 1280, 3125, 6272, 10976, 12500, 14336, 21600, 30375, 36000, 48600, 51840, 54675, 69120, 84375, 121500, 134456, 169344, 174960, 192000, 225000, 240000, 247808, 337500, 340736, 395136, 435456, 451584, 703125, 750141, 781250, 787320, 823543, 857304, 885735
Offset: 1

Views

Author

Giuseppe Coppoletta, May 08 2016

Keywords

Comments

For p prime, p^p satisfy the condition, hence A051674 (and also A048102) is a subsequence. Moreover, if p and q are primes and i and j are positive integers, if p^i * q^j verify the condition, then the same is true for p^j * q^i. So A122406 is also a subsequence. More generally, if a number is a term, then any permutation of the exponents in its prime factorization (i.e. any permutation of its prime signature) gives also a term. In addition, any number having no more than two distinct prime factors (apart their multiplicity) is a term iff it belongs also to A272858.

Examples

			885735 = 3^11 * 5 is included because (3+5) + 3*5 = (11+1) + 11*1.
2^10 * 3^6 * 19^2 is included because (2+3+19)+ 2*3*19 = (10+6+2)+ 10*6*2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Total@ First@ # + Times @@ First@ # == Total@ Last@ # + Times @@ Last@ # &@ Transpose@ FactorInteger@ # &] (* Michael De Vlieger, May 08 2016 *)
  • PARI
    spp(v) = vecsum(v) + prod(k=1, #v, v[k]);
    isok(n) = my(f = factor(n)); spp(f[,1]) == spp(f[,2]); \\ Michel Marcus, May 08 2016
  • Sage
    def d(n):
        v = factor(n)
        d1 = sum(w[0] for w in v) + prod(w[0] for w in v)
        d2 = sum(w[1] for w in v) + prod(w[1] for w in v)
        return d1 == d2
    [k for k in (1..10000) if d(k)]
    

A272858 Numbers m such that Product(1 + p_i) = Product(1 + e_i), where m = Product((p_i)^e_i).

Original entry on oeis.org

1, 4, 27, 72, 96, 108, 486, 800, 1280, 3125, 6272, 10976, 12500, 14336, 21600, 28800, 30375, 34560, 36000, 38880, 48600, 54675, 84375, 92160, 96000, 121500, 134456, 153600, 169344, 217728, 218700, 225000, 247808, 262440, 296352, 300000, 337500, 340736, 387072, 395136, 489888, 666792, 703125, 750141, 781250, 823543, 857304, 885735
Offset: 1

Views

Author

Giuseppe Coppoletta, May 08 2016

Keywords

Comments

A048102 is clearly a subsequence, as for any prime p, p^p satisfy the herein condition. Similarly, A122406 is also a subsequence. More generally, if a number is a term, then any permutation of the exponents in its prime factorization (i.e., any permutation of its prime signature) gives also a term.
The condition defining this sequence coincides with the condition in A272859 at least for the terms of A114129.

Examples

			92160 is included because 92160 = 2^11 * 3^2 * 5 and (2+1)*(3+1)*(5+1) = (11+1)*(2+1)*(1+1).
		

Crossrefs

Programs

  • Mathematica
    ok[n_] := Block[{p,e}, {p,e} = Transpose@ FactorInteger@ n; Times @@ (1+p) == Times @@ (1+e)]; Select[Range[10^6], ok] (* Giovanni Resta, May 08 2016 *)
  • PARI
    is(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]+1)==prod(i=1,#f~,f[i,2]) \\ Charles R Greathouse IV, Sep 08 2016
  • Sage
    def d(n):
        v = factor(n)
        d1 = prod(1 + w[0] for w in v)
        d2 = prod(1 + w[1] for w in v)
        return d1 == d2
    [k for k in (1..10000) if d(k)]
    

Formula

If N is a positive integer and N = Product_{i=1..k} (p_i)^e_i is its prime factorization, then N is in A272858 iff Product_{i=1..k} (1 + p_i) = Product_{i=1..k} (1 + e_i).
For a number with three different prime factors N = p1^e1 * p2^e2 * p3^e3, the defining condition can be expressed as: p1 + p2 + p3 + p1*p2 + p1*p3 + p2*p3 + p1*p2*p3 = e1 + e2 + e3 + e1*e2 + e1*e3 + e2*e3 + e1*e2*e3.
Showing 1-10 of 14 results. Next