cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048105 Number of non-unitary divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 6, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 2, 5, 0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 2, 2, 0, 0, 0, 6, 3, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 2, 0, 0, 0, 8, 0, 2, 2, 5, 0, 0, 0, 4, 0
Offset: 1

Views

Author

Keywords

Comments

Number of zeros in row n of table A225817. - Reinhard Zumkeller, Jul 30 2013

Examples

			Example 1: If n is squarefree (A005117) then a(n)=0 since all divisors are unitary.
Example 2: n=12, d(n)=6, ud(n)=4, nud(12)=d(12)-ud(12)=2; from {1,2,3,4,6,12} {1,3,4,12} are unitary while {2,6} are not unitary divisors.
Example 3: n=p^k, a true prime power, d(n)=k+1, u(d)=2^r(x)=2, so nud(n)=d(p^k)-2=k+1 i.e., it can be arbitrarily large.
		

Crossrefs

Programs

  • Haskell
    a048105 n = length [d | d <- [1..n], mod n d == 0, gcd d (n `div` d) > 1]
    -- Reinhard Zumkeller, Aug 17 2011
    
  • Maple
    with(NumberTheory):
    seq(SumOfDivisors(n, 0) - 2^NumberOfPrimeFactors(n, 'distinct'), n = 1..105);
    # Peter Luschny, Jul 27 2023
  • Mathematica
    Table[DivisorSigma[0, n] - 2^PrimeNu[n], {n, 1, 50}] (* Geoffrey Critzer, Dec 10 2014 *)
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,f[i]+1)-2^#f \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A048105(n): return -(1<Chai Wah Wu, Aug 12 2024

Formula

a(n) = Sigma(0, n) - 2^r(n), where r() = A001221, the number of distinct primes dividing n.
From Reinhard Zumkeller, Jul 30 2013: (Start)
a(n) = A000005(n) - A034444(n).
For n > 1: a(n) = A000005(n) - 2 * A007875(n). (End)
Dirichlet g.f.: zeta(s)^2 - zeta(s)^2/zeta(2*s). - Geoffrey Critzer, Dec 10 2014
G.f.: Sum_{k>=1} (1 - mu(k)^2)*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 21 2017
Sum_{k=1..n} a(k) ~ (1-6/Pi^2)*n*log(n) + ((1-6/Pi^2)*(2*gamma-1)+(72*zeta'(2)/Pi^4))*n , where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022