A048105 Number of non-unitary divisors of n.
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 6, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 4, 0, 0, 2, 5, 0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 2, 2, 0, 0, 0, 6, 3, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 2, 0, 0, 0, 8, 0, 2, 2, 5, 0, 0, 0, 4, 0
Offset: 1
Keywords
Examples
Example 1: If n is squarefree (A005117) then a(n)=0 since all divisors are unitary. Example 2: n=12, d(n)=6, ud(n)=4, nud(12)=d(12)-ud(12)=2; from {1,2,3,4,6,12} {1,3,4,12} are unitary while {2,6} are not unitary divisors. Example 3: n=p^k, a true prime power, d(n)=k+1, u(d)=2^r(x)=2, so nud(n)=d(p^k)-2=k+1 i.e., it can be arbitrarily large.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a048105 n = length [d | d <- [1..n], mod n d == 0, gcd d (n `div` d) > 1] -- Reinhard Zumkeller, Aug 17 2011
-
Maple
with(NumberTheory): seq(SumOfDivisors(n, 0) - 2^NumberOfPrimeFactors(n, 'distinct'), n = 1..105); # Peter Luschny, Jul 27 2023
-
Mathematica
Table[DivisorSigma[0, n] - 2^PrimeNu[n], {n, 1, 50}] (* Geoffrey Critzer, Dec 10 2014 *)
-
PARI
a(n)=my(f=factor(n)[,2]); prod(i=1,#f,f[i]+1)-2^#f \\ Charles R Greathouse IV, Sep 18 2015
-
Python
from math import prod from sympy import factorint def A048105(n): return -(1<
Chai Wah Wu, Aug 12 2024
Formula
a(n) = Sigma(0, n) - 2^r(n), where r() = A001221, the number of distinct primes dividing n.
From Reinhard Zumkeller, Jul 30 2013: (Start)
Dirichlet g.f.: zeta(s)^2 - zeta(s)^2/zeta(2*s). - Geoffrey Critzer, Dec 10 2014
G.f.: Sum_{k>=1} (1 - mu(k)^2)*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 21 2017
Sum_{k=1..n} a(k) ~ (1-6/Pi^2)*n*log(n) + ((1-6/Pi^2)*(2*gamma-1)+(72*zeta'(2)/Pi^4))*n , where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
Comments