A068508 a(n) = round((a(n-1) + a(n-2))/a(n-3)) starting with a(1)=a(2)=a(3)=1.
1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1, 1, 1, 2, 3, 5, 4, 3, 1
Offset: 1
Examples
a(7) = round((a(6) + a(5))/a(4)) = round((5+3)/2) = 4.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).
Formula
a(n) = a(n-8).
Comments