A048152 Triangular array T read by rows: T(n,k) = k^2 mod n, for 1 <= k <= n, n >= 1.
0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 4, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1, 0
Offset: 1
Examples
Rows: 0; 1, 0; 1, 1, 0; 1, 0, 1, 0; 1, 4, 4, 1, 0; 1, 4, 3, 4, 1, 0;
Links
- T. D. Noe, Rows n = 1..100 of triangle, flattened
- Eric Weisstein's World of Mathematics, Quadratic Residue
Crossrefs
Cf. A060036.
Cf. A225126 (central terms).
Cf. A070430 (row 5), A070431 (row 6), A053879 (row 7), A070432 (row 8), A008959 (row 10), A070435 (row 12), A070438 (row 15), A070422 (row 20).
Cf. A046071 (in ascending order, without zeros and duplicates).
Cf. A063987 (for primes, in ascending order, without zeros and duplicates).
Programs
-
Haskell
a048152 n k = a048152_tabl !! (n-1) !! (k-1) a048152_row n = a048152_tabl !! (n-1) a048152_tabl = zipWith (map . flip mod) [1..] a133819_tabl -- Reinhard Zumkeller, Apr 29 2013
-
Mathematica
Flatten[Table[PowerMod[k,2,n],{n,15},{k,n}]] (* Harvey P. Dale, Jun 20 2011 *)
Formula
T(n,k) = A133819(n,k) mod n, k = 1..n. - Reinhard Zumkeller, Apr 29 2013
T(n,k) = (T(n,k-1) + (2k+1)) mod n. - Andrés Ventas, Apr 06 2021