A048211 Number of distinct resistances that can be produced from a circuit of n equal resistors using only series and parallel combinations.
1, 2, 4, 9, 22, 53, 131, 337, 869, 2213, 5691, 14517, 37017, 93731, 237465, 601093, 1519815, 3842575, 9720769, 24599577, 62283535, 157807915, 400094029, 1014905643, 2576046289, 6541989261, 16621908599, 42251728111, 107445714789, 273335703079
Offset: 1
Examples
a(2) = 2 since given two 1-ohm resistors, a series circuit yields 2 ohms, while a parallel circuit yields 1/2 ohms.
Links
- Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, 68(2), 175-179 (February 2000). [From _Sameen Ahmed Khan_, Apr 27 2010]
- Sameen Ahmed Khan, Mathematica program
- Sameen Ahmed Khan, Mathematica notebook for A048211 and A000084
- Sameen Ahmed Khan, The bounds of the set of equivalent resistances of n equal resistors combined in series and in parallel, arXiv:1004.3346 [physics.gen-ph], 2010.
- Sameen Ahmed Khan, How Many Equivalent Resistances?, RESONANCE, May 2012. - From _N. J. A. Sloane_, Oct 15 2012
- Sameen Ahmed Khan, Farey sequences and resistor networks, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 122, No. 2, May 2012, pp. 153-162. - From _N. J. A. Sloane_, Oct 23 2012
- Sameen Ahmed Khan, Beginning to Count the Number of Equivalent Resistances, Indian Journal of Science and Technology, Vol. 9, Issue 44, pp. 1-7, 2016.
- Marx Stampfli, Bridged graphs, circuits and Fibonacci numbers, Applied Mathematics and Computation, Volume 302, 1 June 2017, Pages 68-79.
Crossrefs
Let T(x, n) = 1 if x can be constructed with n 1-ohm resistors in a circuit, 0 otherwise. Then A048211 is t(n) = sum(T(x, n)) for all x (x is necessarily rational). Let H(x, n) = 1 if T(x, n) = 1 and T(x, k) = 0 for all k < n, 0 otherwise. Then A051389 is h(n) = sum(H(x, n)) for all x (x is necessarily rational).
Cf. A153588, A174283, A174284, A174285 and A174286, A176497, A176498, A176499, A176500, A176501, A176502. - Sameen Ahmed Khan, Apr 27 2010
Cf. A180414.
Programs
-
Maple
r:= proc(n) option remember; `if`(n=1, {1}, {seq(seq(seq( [f+g, 1/(1/f+1/g)][], g in r(n-i)), f in r(i)), i=1..n/2)}) end: a:= n-> nops(r(n)): seq(a(n), n=1..15); # Alois P. Heinz, Apr 02 2015
-
Mathematica
r[n_] := r[n] = If[n == 1, {1}, Union @ Flatten @ {Table[ Table[ Table[ {f+g, 1/(1/f+1/g)}, {g, r[n-i]}], {f, r[i]}], {i, 1, n/2}]}]; a[n_] := Length[r[n]]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *)
-
PARI
\\ not efficient; just to show the method N=10; L=vector(N); L[1]=[1]; { for (n=2, N, my( T = Set( [] ) ); for (k=1, n\2, for (j=1, #L[k], my( r1 = L[k][j] ); for (i=1, #L[n-k], my( r2 = L[n-k][i] ); T = setunion(T, Set([r1+r2, r1*r2/(r1+r2) ]) ); ); ); ); T = vecsort(Vec(T), , 8); L[n] = T; ); } for(n=1, N, print1(#L[n], ", ") ); \\ Joerg Arndt, Mar 07 2015
Formula
From Bill McEachen, Jun 08 2024: (Start)
(2.414^n)/4 < a(n) < (1-1/n)*(0.318)*(2.618^n) (Khan, n>3).
Conjecture: a(n) ~ K * a(n-1), K approx 2.54. (End)
Extensions
More terms from John W. Layman, Apr 06 2002
a(16)-a(21) from Jon E. Schoenfield, Aug 06 2006
a(22) from Jon E. Schoenfield, Aug 28 2006
a(23) from Jon E. Schoenfield, Apr 18 2010
Definition edited (to specify that the sequence considers only series and parallel combinations) by Jon E. Schoenfield, Sep 02 2013
a(24)-a(25) from Antoine Mathys, Apr 02 2015
a(26)-a(27) from Johannes P. Reichart, Nov 24 2018
a(28)-a(30) from Antoine Mathys, Dec 08 2024
Comments