cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064141 Sum of non-unitary divisors of central binomial coefficient C(n, floor(n/2)).

Original entry on oeis.org

0, 0, 0, 0, 0, 12, 0, 0, 72, 328, 0, 768, 1344, 4032, 3024, 9072, 0, 36288, 0, 120960, 322560, 967680, 0, 1935360, 6013440, 15966720, 43545600, 104094720, 163296000, 362361600, 149299200, 447897600, 1194393600, 4644864000, 2654208000
Offset: 1

Views

Author

Labos Elemer, Sep 11 2001

Keywords

Examples

			For n = 6, binomial(6,3) = 20 = 4*5, divisors = {1,2,4,5,10,20} of which the non-unitary divisors are 2 and 10 with sum a(6) = 12.
		

Crossrefs

Programs

  • Mathematica
    nus[n_] := If[n==1, 0, DivisorSigma[1, n] - Times @@ (1 + Power @@@ FactorInteger[n])]; Table[nus@ Binomial[n, Floor[n/2]], {n, 35}] (* Giovanni Resta, Jun 22 2018 *)
  • PARI
    usigma(n)= { my(f,s=1); f=factor(n); for(i=1, matsize(f)[1], s*=1 + f[i, 1]^f[i, 2]); return(s) }
    a(n)={my(b=binomial(n, n\2)); sigma(b) - usigma(b);} \\ Harry J. Smith, Sep 08 2009

Formula

a(n) = A048146(A001405(n)). [corrected by Amiram Eldar, Mar 07 2025]
If n is in A046098 then a(n)=0.

A064146 Sum of non-unitary prime divisors of binomial(n,floor(n/2)).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 3, 5, 0, 2, 2, 2, 3, 3, 0, 2, 0, 2, 2, 2, 0, 2, 7, 7, 10, 10, 5, 5, 3, 3, 3, 5, 5, 7, 7, 7, 3, 5, 2, 2, 2, 2, 10, 10, 8, 10, 12, 12, 12, 12, 9, 9, 2, 2, 2, 2, 2, 2, 2, 2, 10, 10, 7, 9, 7, 9, 5, 5, 0, 2, 2, 2, 7, 7, 14, 14, 7, 9, 12, 12, 5, 5, 10, 10, 10, 10, 5, 5, 12, 12, 12
Offset: 1

Views

Author

Labos Elemer, Sep 11 2001

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(i[2]>1, i[1], 0), i=ifactors(binomial(n, iquo(n,2)))[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 24 2018
  • Mathematica
    a[n_] := Sum[If[i[[2]] > 1, i[[1]], 0], {i, FactorInteger[ Binomial[n, Quotient[n, 2]]]}];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
  • PARI
    a(n) = { my(f=factor(binomial(n, n\2))); sum(i=1, #f~, if (f[i, 2]>1, f[i,1])) } \\ Harry J. Smith, Sep 09 2009

Formula

a(n) = A063958(A001405(n)).

A064032 Product of unitary divisors of binomial(n, floor(n/2)).

Original entry on oeis.org

1, 2, 3, 36, 100, 400, 1225, 24010000, 252047376, 4032758016, 2075562447064149770496, 531343986448422341246976, 75186222935463997063888896, 19247673071478783248355557376, 2940278105018015412903875390625, 566574142904620264536665169363475932852029446342410000000000000000
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n^(2^(PrimeNu[n]-1)); Table[f[Binomial[n, Floor[n/2]]], {n, 1, 20}] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    a(n) = apply(x -> x^(2^(omega(x)-1)), binomial(n, n\2)); \\ Amiram Eldar, Jul 22 2024

Formula

a(n) = A061537(A001405(n)). - Amiram Eldar, Jul 22 2024

Extensions

a(15)-a(16) from Amiram Eldar, Jul 22 2024

A064033 Product of non-unitary divisors of binomial(n, floor(n/2)) or a(n) = 1 if all divisors are unitary. See A046098.

Original entry on oeis.org

1, 1, 1, 1, 1, 20, 1, 1, 15876, 1016255020032, 1, 728933458176, 8670998958336, 19247673071478783248355557376, 1714723915100625, 752711194884611945703392100000000, 1, 31226235883841773375939805209600000000, 1, 1357651828905889565182743230460164655087616
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n^((DivisorSigma[0, n] - 2^PrimeNu[n]) / 2); Table[f[Binomial[n, Floor[n/2]]], {n, 1, 20}] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    a(n) = apply(x -> x^((numdiv(x) - 2^omega(x))/2), binomial(n, n\2)); \\ Amiram Eldar, Jul 22 2024

Formula

a(n) = A061538(A001405(n)).

Extensions

a(18)-a(20) from Amiram Eldar, Jul 22 2024
Showing 1-4 of 4 results.