cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048333 Numbers that are repdigits in base 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 27, 36, 45, 54, 63, 73, 146, 219, 292, 365, 438, 511, 585, 1170, 1755, 2340, 2925, 3510, 4095, 4681, 9362, 14043, 18724, 23405, 28086, 32767, 37449, 74898, 112347, 149796, 187245, 224694, 262143, 299593, 599186, 898779
Offset: 0

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Comments

For the general case, the sequence of numbers that are repdigits in base b > 1 satisfies the recurrence a(n) = (b+1)*a(n-b+1) - b*a(n-2*(b-1)) for n >= 2(b-1) with g.f.: (sum_{1 <= i < b} i*x^i)/(1 - (b+1)*x^(b-1) + bx^(2(b-1))). - Chai Wah Wu, May 30 2016

Crossrefs

Programs

  • Mathematica
    Union[Flatten[Table[FromDigits[PadRight[{}, n, d], 8], {n, 0, 40}, {d, 7}]]] (* Vincenzo Librandi, Feb 06 2014 *)
    LinearRecurrence[{0,0,0,0,0,0,9,0,0,0,0,0,0,-8},{0,1,2,3,4,5,6,7,9,18,27,36,45,54},50] (* Harvey P. Dale, Dec 09 2018 *)
  • PARI
    is(n)=#Set(digits(n,8))==1 \\ Charles R Greathouse IV, Feb 15 2017

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = 9*a(n-7) - 8*a(n-14) for n > 13.
G.f.: x*(7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(8*x^14 - 9*x^7 + 1). (End)
Sum_{n>=1} 1/a(n) = (363/20) * A248725 = 2.92153624531838250201... - Amiram Eldar, Jan 21 2022

Extensions

Changed offset from 1 to 0 by Vincenzo Librandi, Feb 06 2014