A048345 a(n)^2 is the smallest square containing exactly n 0's.
0, 10, 320, 100, 3200, 1000, 32000, 10000, 320000, 100000, 3200000, 1000000, 32000000, 10000000, 320000000, 100000000, 3200000000, 1000000000, 32000000000, 10000000000, 320000000000, 100000000000
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Square Number
- Index entries for linear recurrences with constant coefficients, signature (0,10).
Programs
-
Magma
a:=[0,10,320]; [n le 3 select a[n] else 10*Self(n-2):n in [1..25]]; // Marius A. Burtea, Oct 11 2019
-
Mathematica
LinearRecurrence[{0,10},{0,10,320},30] (* Harvey P. Dale, Feb 10 2022 *)
Formula
From Ralf Stephan, Jul 18 2013: (Start)
a(n) = 10*a(n-2); a(0)=0, a(1)=10, a(2)=320.
G.f.: (10*x + 320*x^2)/(1-10*x^2). (End)
Extensions
More terms from Lior Manor, Jul 02 2001
a(20) corrected by Georg Fischer, Dec 07 2019