A048396 Sums of consecutive noncubes.
0, 27, 315, 1638, 5670, 15345, 35217, 71820, 134028, 233415, 384615, 605682, 918450, 1348893, 1927485, 2689560, 3675672, 4931955, 6510483, 8469630, 10874430, 13796937, 17316585, 21520548, 26504100, 32370975, 39233727, 47214090, 56443338, 67062645, 79223445
Offset: 0
Examples
Between 3^3 and 4^3 we have: 28 + 29 + ... + 62 + 63 = 1638 = a(3).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[(6*n^5+15*n^4+18*n^3+12*n^2+3*n)/2 : n in [0..50]]; // Wesley Ivan Hurt, Apr 10 2015
-
Maple
A048396:=n->(6*n^5+15*n^4+18*n^3+12*n^2+3*n)/2: seq(A048396(n), n=0..50); # Wesley Ivan Hurt, Apr 10 2015
-
Mathematica
Table[Total[Range[n^3+1,(n+1)^3-1]], {n,0,30}] (* Harvey P. Dale, Jan 08 2011 *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,27,315,1638,5670,15345},40] (* Harvey P. Dale, Nov 02 2024 *)
-
PARI
a(n)=(6*n^5+15*n^4+18*n^3+12*n^2+3*n)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
Python
def A048396(n): return n*(n*(n*(n*(6*n + 15) + 18) + 12) + 3)>>1 # Chai Wah Wu, Sep 04 2024
Formula
a(n) = ( 6n^5 + 15n^4 + 18n^3 + 12n^2 + 3n ) / 2.
G.f.: 9*x*(1+x)*(3+14*x+3*x^2)/(1-x)^6. - Colin Barker, Mar 15 2012
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Wesley Ivan Hurt, Apr 10 2015
Comments