cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048488 a(n) = 6*2^n - 5.

Original entry on oeis.org

1, 7, 19, 43, 91, 187, 379, 763, 1531, 3067, 6139, 12283, 24571, 49147, 98299, 196603, 393211, 786427, 1572859, 3145723, 6291451, 12582907, 25165819, 50331643, 100663291, 201326587, 402653179, 805306363, 1610612731
Offset: 0

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

a(n) = T(5, n), array T given by A048483.
Sequence is generated by the Northwest (NW) direction of circles put around circle(s). See illustration. - Odimar Fabeny, Aug 09 2008

Examples

			a(2) = 6 * 2^2 - 5 = 6 * 4 - 5 = 24 - 5 = 19.
a(3) = 6 * 2^3 - 5 = 6 * 8 - 5 = 48 - 5 = 43.
		

Crossrefs

n-th difference of a(n), a(n-1), ..., a(0) is (6, 6, 6, ...).
Cf. A000079, A007283. - Omar E. Pol, Dec 21 2008

Programs

Formula

a(n) = 2*a(n-1) + 5, n > 0, a(0) = 1. - Paul Barry, Aug 25 2004
Equals binomial transform of [1, 6, 6, 6, ...]. - Gary W. Adamson, Apr 29 2008
a(n) = A000079(n)*6 - 5 = A007283(n)*2 - 5. - Omar E. Pol, Dec 21 2008
From Colin Barker, Sep 17 2012: (Start)
a(n) = 3*2^(1+n) - 5. a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: (1+4*x)/((1-x)*(1-2*x)). (End)
a(n + 1) = 3 * 2^n - 5 = 1 + 2 * (Sum_{i=0..n-1} 3i) for n > 0. - Gerasimov Sergey and Alonso del Arte, May 03 2014
a(n) = A000225(n+1)+4*A000225(n). - R. J. Mathar, Feb 27 2019

Extensions

Simpler definition from Ralf Stephan