A048488 a(n) = 6*2^n - 5.
1, 7, 19, 43, 91, 187, 379, 763, 1531, 3067, 6139, 12283, 24571, 49147, 98299, 196603, 393211, 786427, 1572859, 3145723, 6291451, 12582907, 25165819, 50331643, 100663291, 201326587, 402653179, 805306363, 1610612731
Offset: 0
Examples
a(2) = 6 * 2^2 - 5 = 6 * 4 - 5 = 24 - 5 = 19. a(3) = 6 * 2^3 - 5 = 6 * 8 - 5 = 48 - 5 = 43.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Odimar Fabeny, Illustration for this sequence
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
n-th difference of a(n), a(n-1), ..., a(0) is (6, 6, 6, ...).
Programs
-
Magma
[6*2^n - 5: n in [0..30]]; // Vincenzo Librandi, May 18 2011
-
Maple
A048488:=n->6*2^n - 5; seq(A048488(n), n=0..30); # Wesley Ivan Hurt, May 09 2014
-
Mathematica
6(2^Range[0, 35]) - 5 (* Alonso del Arte, May 03 2014 *)
-
PARI
a(n)=6*2^n-5 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 2*a(n-1) + 5, n > 0, a(0) = 1. - Paul Barry, Aug 25 2004
Equals binomial transform of [1, 6, 6, 6, ...]. - Gary W. Adamson, Apr 29 2008
From Colin Barker, Sep 17 2012: (Start)
a(n) = 3*2^(1+n) - 5. a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: (1+4*x)/((1-x)*(1-2*x)). (End)
a(n + 1) = 3 * 2^n - 5 = 1 + 2 * (Sum_{i=0..n-1} 3i) for n > 0. - Gerasimov Sergey and Alonso del Arte, May 03 2014
Extensions
Simpler definition from Ralf Stephan
Comments