cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A048483 Array read by antidiagonals: T(k,n) = (k+1)2^n - k.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 10, 5, 1, 32, 31, 22, 13, 6, 1, 64, 63, 46, 29, 16, 7, 1, 128, 127, 94, 61, 36, 19, 8, 1, 256, 255, 190, 125, 76, 43, 22, 9, 1, 512, 511, 382, 253, 156, 91, 50, 25, 10, 1, 1024, 1023, 766, 509, 316, 187
Offset: 0

Views

Author

Keywords

Comments

n-th difference of (T(k,n),T(k,n-1),...,T(k,0)) is k+1, for n=1,2,3,...; k=0,1,2,...

Examples

			1 2 4 8 16 32 ...
1 3 7 15 31 63 ...
1 4 10 22 46 94 ...
1 5 13 29 61 125 ...
1 6 16 36 76 156 ...
		

Crossrefs

Rows are A000079 (k=0), A000225 (k=1), A033484 (k=2), A036563 (k=3), A048487 (k=4), A048488 (k=5), A048489 (k=6), A048490 (k=7), A048491 (k=8).
Main diagonal is A048493. Cf. A048494.

Formula

G.f.: (1-x+kx)/[(1-x)(1-2x)]. E.g.f.: (k+1)*exp(2x) - k*exp(x).
Recurrences: T(k, n) = 2T(k, n-1)+k = T(k-1, n)+2^n-1, T(k, 0) = 1.

Extensions

Edited by Ralf Stephan, Feb 05 2004

A131114 T(n,k) = 6*binomial(n,k) - 5*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).

Original entry on oeis.org

1, 6, 1, 6, 12, 1, 6, 18, 18, 1, 6, 24, 36, 24, 1, 6, 30, 60, 60, 30, 1, 6, 36, 90, 120, 90, 36, 1, 6, 42, 126, 210, 210, 126, 42, 1, 6, 48, 168, 336, 420, 336, 168, 48, 1, 6, 54, 216, 504, 756, 756, 504, 216, 54, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 15 2007

Keywords

Comments

Row sums give A048488.

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  6,  1;
  6, 12,  1;
  6, 18, 18,   1;
  6, 24, 36,  24,  1;
  6, 30, 60,  60, 30,  1;
  6, 36, 90, 120, 90, 36, 1;
  ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=n then return 1;
        else return 6*Binomial(n,k);
        fi;  end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
  • Magma
    [k eq n select 1 else 6*Binomial(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    seq(seq(`if`(k=n, 1, 6*binomial(n,k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
  • Mathematica
    Table[If[k==n, 1, 6*Binomial[n, k]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
  • PARI
    T(n,k) = if(k==n, 1, 6*binomial(n,k)); \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    def T(n, k):
        if (k==n): return 1
        else: return 6*binomial(n, k)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
    

Formula

T(n,k) = 6*A007318(n,k) - 5*I(n,k), where A007318 = Pascal's triangle and I = Identity matrix.
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 5*x - x*y)/((1 - x*y)*(1 - x - x*y)).

A079360 Sequence of sums of alternating increasing powers of 2.

Original entry on oeis.org

1, 5, 7, 15, 19, 35, 43, 75, 91, 155, 187, 315, 379, 635, 763, 1275, 1531, 2555, 3067, 5115, 6139, 10235, 12283, 20475, 24571, 40955, 49147, 81915, 98299, 163835, 196603, 327675, 393211, 655355, 786427, 1310715, 1572859, 2621435, 3145723
Offset: 0

Views

Author

Cino Hilliard, Feb 15 2003

Keywords

Comments

Found as a question on http://mail.python.org/mailman/listinfo/tutor poster: reavey.

Crossrefs

Cf. A079361, A079362, A048488 (bisection).

Programs

  • GAP
    a:=[1,5,7];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Aug 07 2019
  • Magma
    I:=[1,5,7]; [n le 3 select I[n] else Self(n-1) +2*Self(n-2) -2*Self(n-3): n in [1..40]]; // G. C. Greubel, Aug 07 2019
    
  • Maple
    seq(coeff(series((1+4*x)/((1-x)*(1-2*x^2)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Aug 07 2019
  • Mathematica
    LinearRecurrence[{1,2,-2}, {1,5,7}, 40] (* G. C. Greubel, Aug 07 2019 *)
  • PARI
    seq(n) = { j=a=1; p=2; print1(1" "); while(j<=n, a = a + 2^p; print1(a" "); a = a+2^(p-1); print1(a" "); p+=1; j+=2; ) }
    
  • PARI
    a(n)=if(n<0,0,(6-n%2)*2^ceil(n/2)-5)
    
  • Sage
    @CachedFunction
    def a(n):
        if (n==0): return 1
        elif (1<=n<=2): return nth_prime(n+2)
        else: return a(n-1) + 2*a(n-2) - 2*a(n-3)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 07 2019
    

Formula

a(2n) = 6*2^n - 5, a(2n-1) = 5*(2^n - 1). - Benoit Cloitre, Feb 16 2003
From Colin Barker, Sep 19 2012: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3).
G.f.: (1+4*x)/((1-x)*(1-2*x^2)). (End)

A119727 Triangular array: T(n,k) = T(n,n) = 1, T(n,k) = 5*T(n-1, k-1) + 2*T(n-1, k), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 19, 37, 1, 1, 43, 169, 187, 1, 1, 91, 553, 1219, 937, 1, 1, 187, 1561, 5203, 7969, 4687, 1, 1, 379, 4057, 18211, 41953, 49219, 23437, 1, 1, 763, 10009, 56707, 174961, 308203, 292969, 117187, 1, 1, 1531, 23833, 163459, 633457, 1491211, 2126953, 1699219, 585937, 1
Offset: 1

Views

Author

Zerinvary Lajos, Jun 14 2006

Keywords

Comments

Second column is A048488. Second diagonal is A057651.

Examples

			Triangle begins as:
  1;
  1,    1;
  1,    7,     1;
  1,   19,    37,      1;
  1,   43,   169,    187,      1;
  1,   91,   553,   1219,    937,       1;
  1,  187,  1561,   5203,   7969,    4687,       1;
  1,  379,  4057,  18211,  41953,   49219,   23437,       1;
  1,  763, 10009,  56707, 174961,  308203,  292969,  117187,      1;
  1, 1531, 23833, 163459, 633457, 1491211, 2126953, 1699219, 585937, 1;
		

References

  • TERMESZET VILAGA XI.TERMESZET-TUDOMANY DIAKPALYAZAT 133.EVF. 6.SZ. jun. 2002. Vegh Lea (and Vegh Erika): "Pascal-tipusu haromszogek" http://www.kfki.hu/chemonet/TermVil/tv2002/tv0206/tartalom.html

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k eq 1 or k eq n then return 1;
      else return 5*T(n-1,k-1) + 2*T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 18 2019
    
  • Maple
    T:= proc(n, k) option remember;
          if k=1 and k=n then 1
        else 5*T(n-1, k-1) + 2*T(n-1, k)
          fi
    end: seq(seq(T(n, k), k=1..n), n=1..12); # G. C. Greubel, Nov 18 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, 5*T[n-1, k-1] + 2*T[n-1, k]]; Table[T[n,k], {n,10}, {k,n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
  • PARI
    T(n,k) = if(k==1 || k==n, 1, 5*T(n-1,k-1) + 2*T(n-1,k)); \\ G. C. Greubel, Nov 18 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==1 or k==n): return 1
        else: return 5*T(n-1, k-1) + 2*T(n-1, k)
    [[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 18 2019

Extensions

Edited by Don Reble, Jul 24 2006

A062001 Table by antidiagonals of n-Stohr sequences: T(n,k) is least positive integer not the sum of at most n distinct terms in the n-th row from T(n,1) through to T(n,k-1).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 7, 4, 2, 1, 6, 10, 8, 4, 2, 1, 7, 13, 15, 8, 4, 2, 1, 8, 16, 22, 16, 8, 4, 2, 1, 9, 19, 29, 31, 16, 8, 4, 2, 1, 10, 22, 36, 46, 32, 16, 8, 4, 2, 1, 11, 25, 43, 61, 63, 32, 16, 8, 4, 2, 1, 12, 28, 50, 76, 94, 64, 32, 16, 8, 4, 2, 1, 13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1
Offset: 1

Views

Author

Henry Bottomley, May 29 2001

Keywords

Examples

			Array begins as:
  1, 2, 3, 4,  5,  6,  7,   8,   9, ... A000027;
  1, 2, 4, 7, 10, 13, 16,  19,  22, ... A033627;
  1, 2, 4, 8, 15, 22, 29,  36,  43, ... A026474;
  1, 2, 4, 8, 16, 31, 46,  61,  76, ... A051039;
  1, 2, 4, 8, 16, 32, 63,  94, 125, ... A051040;
  1, 2, 4, 8, 16, 32, 64, 127, 190, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 255, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 256, ... ;
  1, 2, 4, 8, 16, 32, 64, 128, 256, ... ;
Antidiagonal triangle begins as:
   1;
   2,  1;
   3,  2,  1;
   4,  4,  2,  1;
   5,  7,  4,  2,   1;
   6, 10,  8,  4,   2,   1;
   7, 13, 15,  8,   4,   2,  1;
   8, 16, 22, 16,   8,   4,  2,  1;
   9, 19, 29, 31,  16,   8,  4,  2,  1;
  10, 22, 36, 46,  32,  16,  8,  4,  2, 1;
  11, 25, 43, 61,  63,  32, 16,  8,  4, 2, 1;
  12, 28, 50, 76,  94,  64, 32, 16,  8, 4, 2, 1;
  13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1;
		

Crossrefs

Diagonals include A000079, A000225, A033484, A036563, A048487.
A048483 can be seen as half this table.

Programs

  • Mathematica
    T[n_, k_]:= If[kG. C. Greubel, May 03 2022 *)
  • SageMath
    def A062001(n,k):
        if (kA062001(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, May 03 2022

Formula

If k <= n+1 then A(n, k) = 2^(k-1), while if k > n+1, A(n, k) = (2^n - 1)*(k - n) + 1 (array).
T(n, k) = A(k, n-k+1) (antidiagonals).
T(2*n-1, n) = A000079(n-1), n >= 1.
T(2*n, n) = A000079(n), n >= 1.
T(2*n+1, n) = A000225(n+1), n >= 1.
T(2*n+2, n) = A033484(n), n >= 1.
T(2*n+3, n) = A036563(n+3), n >= 1.
T(2*n+4, n) = A048487(n), n >= 1.
From G. C. Greubel, May 03 2022: (Start)
T(n, k) = (2^k - 1)*(n-2*k+1) + 1 for k < n/2, otherwise 2^(n-k).
T(2*n+5, n) = A048488(n), n >= 1.
T(2*n+6, n) = A048489(n), n >= 1.
T(2*n+7, n) = A048490(n), n >= 1.
T(2*n+8, n) = A048491(n), n >= 1.
T(2*n+9, n) = A139634(n), n >= 1.
T(2*n+10, n) = A139635(n), n >= 1.
T(2*n+11, n) = A139697(n), n >= 1. (End)

A057912 Numbers k such that 3*2^k - 5 is prime.

Original entry on oeis.org

2, 3, 4, 7, 9, 10, 13, 15, 25, 31, 34, 48, 52, 64, 109, 145, 162, 204, 207, 231, 271, 348, 444, 553, 559, 1504, 1708, 3048, 3970, 4423, 4668, 5737, 5877, 6130, 8584, 10663, 12517, 16591, 18450, 19362, 22291, 34468, 36637, 52212, 59040, 130279, 236511, 392260, 496411, 536868, 565024, 662703, 908005
Offset: 1

Views

Author

Robert G. Wilson v, Nov 16 2000

Keywords

Comments

a(44) > 44233. - Jinyuan Wang, Feb 02 2020
a(54) > 1000000 - Jon Grantham, Jul 30 2023

Crossrefs

Cf. A057913 (3*2^k + 5 is prime).
Cf. A048488 (3*2^k - 5, but with different offset).

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 3*2^n - 5 ], Print[ n ] ], {n, 1, 3000} ]
  • PARI
    is(n)=ispseudoprime(3*2^n-5) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(36)-a(41) from Vincenzo Librandi, Oct 10 2013
a(42)-a(43) from Jinyuan Wang, Feb 02 2020
a(44)-a(45) from Michael S. Branicky, May 20 2023
a(46)-a(53) from Jon Grantham, Jul 30 2023

A137215 a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.

Original entry on oeis.org

3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182
Offset: 0

Views

Author

Ctibor O. Zizka, Mar 06 2008

Keywords

Comments

Sequence generalized: a(n) = a(0)*(B^n) + F(n)* ((B^n)-1)/(B-1); a(0), B integers, F(n) arithmetic function.
Examples:
a(0) = 1, B = 10, F(n) = 1 gives A002275, F(n) = 2 gives A090843, F(n) = 3 gives A097166, F(n) = 4 gives A099914, F(n) = 5 gives A099915.
a(0) = 1, B = 2, F(n) = 1 gives A000225, F(n) = 2 gives A033484, F(n) = 3 gives A036563, F(n) = 4 gives A048487, F(n) = 5 gives A048488, F(n) = 6 gives A048489.
a(0) = 1, B = 3, F(n) = 1 gives A003462, F(n) = 2 gives A048473, F(n) = 3 gives A134931, F(n) = 4 gives A058481, F(n) = 5 gives A116952.
a(0) = 1, B = 4, F(n) = 1 gives A002450, F(n) = 2 gives A020989, F(n) = 3 gives A083420, F(n) = 4 gives A083597, F(n) = 5 gives A083584.
a(0) = 1, B = 5, F(n) = 1 gives A003463, F(n) = 2 gives A057651, F(n) = 3 gives A117617, F(n) = 4 gives A081655.
a(0) = 2, B = 10, F(n) = 1 gives A037559, F(n) = 2 gives A002276.

Examples

			a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110.
		

Crossrefs

Programs

  • Mathematica
    Table[3*10^n +(n^2 +1)*(10^n -1)/9, {n,0,30}] (* G. C. Greubel, Jan 05 2022 *)
  • PARI
    a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020
    
  • Sage
    [3*10^n +(1+n^2)*(10^n -1)/9 for n in (0..30)] # G. C. Greubel, Jan 05 2022

Formula

a(n) = 3*(10^n) + (n^2 + 1)*(10^n - 1)/9.
O.g.f.: (3 - 67*x + 478*x^2 - 1002*x^3 + 850*x^4 - 100*x^5)/((1-x)^3 * (1-10*x)^3). - R. J. Mathar, Mar 16 2008

Extensions

More terms from R. J. Mathar, Mar 16 2008
More terms from Jinyuan Wang, Feb 27 2020

A256255 Triangle read by rows: T(n,k) = 6*k + 1, n>=0, 0<=k<=(2^n-1).

Original entry on oeis.org

1, 1, 7, 1, 7, 13, 19, 1, 7, 13, 19, 25, 31, 37, 43, 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103
Offset: 0

Views

Author

Omar E. Pol, Apr 30 2015

Keywords

Comments

Row n lists the first 2^n terms of A016921, n >= 0.
Row sums give A165665.
Right border gives A048488.
The sum of all terms of the first k rows gives A060867(k).
The product of the terms of the third row is equal to the Hardy-Ramanujan number: 1 * 7 * 13 * 19 = 1729.

Examples

			Triangle begins:
1;
1,7;
1,7,13,19;
1,7,13,19,25,31,37,43;
1,7,13,19,25,31,37,43,49,55,61,67,73,79,85,91;
...
Illustration of initial terms in the fourth quadrant of the square grid:
------------------------------------------------------------------------
n   a(n)             Compact diagram
------------------------------------------------------------------------
.            _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
0    1      |_|_  |_ _ _  |_ _ _ _ _ _ _  |
1    1      | |_| |_ _  | |_ _ _ _ _ _  | |
2    7      |_ _ _|_  | | |_ _ _ _ _  | | |
3    1      | | | |_| | | |_ _ _ _  | | | |
4    7      | | |_ _ _| | |_ _ _  | | | | |
5   13      | |_ _ _ _ _| |_ _  | | | | | |
6   19      |_ _ _ _ _ _ _|_  | | | | | | |
7    1      | | | | | | | |_| | | | | | | |
8    7      | | | | | | |_ _ _| | | | | | |
9   13      | | | | | |_ _ _ _ _| | | | | |
10  19      | | | | |_ _ _ _ _ _ _| | | | |
11  25      | | | |_ _ _ _ _ _ _ _ _| | | |
12  31      | | |_ _ _ _ _ _ _ _ _ _ _| | |
13  37      | |_ _ _ _ _ _ _ _ _ _ _ _ _| |
14  43      |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
a(n) is also the number of cells in the n-th region of the diagram.
For other diagrams of the same family see A241717 and A256258.
		

Crossrefs

Programs

  • Mathematica
    With[{rows=7},Array[Range[1,6*2^#,6]&,rows,0]] (* Paolo Xausa, Sep 26 2023 *)

A368826 Square array T(n,k) = 3*2^k - n read by ascending antidiagonals.

Original entry on oeis.org

3, 2, 6, 1, 5, 12, 0, 4, 11, 24, -1, 3, 10, 23, 48, -2, 2, 9, 22, 47, 96, -3, 1, 8, 21, 46, 95, 192, -4, 0, 7, 20, 45, 94, 191, 384, -5, -1, 6, 19, 44, 93, 190, 383, 768, -6, -2, 5, 18, 43, 92, 189, 382, 767, 1536, -7, -3, 4, 17, 42, 91, 188, 381, 766, 1535, 3072
Offset: 0

Views

Author

Paul Curtz, Jan 07 2024

Keywords

Comments

Similar to A367559.

Examples

			Table begins:
   3  6 12 24 48 96 ...
   2  5 11 23 47 95 ...
   1  4 10 22 46 94 ...
   0  3  9 21 45 93 ...
  -1  2  8 20 44 92 ...
  -2  1  7 19 43 91 ...
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := 3*2^k - n; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jan 15 2024 *)

Formula

T(0,k) = 3*2^k = A007283(k).
T(1,k) = 3*2^k - 1 = A083329(k+1).
T(2,k) = 3*2^k - 2 = A033484(k).
T(3,k) = 3*2^k - 3 = 3*A000225(k).
T(4,k) = 3*2^k - 4 = -A165751(k).
T(5,k) = 3*2^k - 5 = A048488(k-1)
T(6,k) = 3*2^k - 6 = 3*A000918(k).
Showing 1-9 of 9 results.