A048506 a(n) = T(0,n), array T given by A048505.
1, 2, 7, 25, 81, 241, 673, 1793, 4609, 11521, 28161, 67585, 159745, 372737, 860161, 1966081, 4456449, 10027009, 22413313, 49807361, 110100481, 242221057, 530579457, 1157627905, 2516582401, 5452595201, 11777605633, 25367150593, 54492397569, 116769423361
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (7,-18,20,-8).
Programs
-
Magma
[n*(n+1)*2^(n-2) + 1: n in [0..30]]; // Vincenzo Librandi, Sep 26 2011
-
Mathematica
LinearRecurrence[{7,-18,20,-8}, {1,2,7,25}, 30] (* Jean-François Alcover, Jun 11 2019 *)
-
PARI
Vec(-(8*x^3-11*x^2+5*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Nov 26 2014
-
Sage
def sq(): yield 1 for n in PositiveIntegers(): yield n*n def bous_variant(f): k = 0 am = next(f) a = [am] while True: yield am am = next(f) a.append(am) for j in range(k,-1,-1): am += a[j] a[j] = am k += 1 b = bous_variant(sq()) print([next(b) for in range(26)]) # _Peter Luschny, Oct 30 2014
Formula
a(n) = n*(n+1)*2^(n-2) + 1 = A001788(n) + 1. - Ralf Stephan, Jan 16 2004
a(n) = 7*a(n-1)-18*a(n-2)+20*a(n-3)-8*a(n-4). - Colin Barker, Nov 26 2014
G.f.: -(8*x^3-11*x^2+5*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Nov 26 2014
Comments