cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A048559 a(n+1) is next smallest nontrivial square beginning with a(n), initial square is 4.

Original entry on oeis.org

4, 49, 49284, 4928461209, 492846120914204828164, 4928461209142048281644440027571600000000001, 49284612091420482816444400275716000000000017667716927194638935286982918857620344809476
Offset: 0

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

Next terms are 171, 342 and 685 digits long.

Crossrefs

A048557 a(1) = 1; a(n+1) is next smallest nontrivial square beginning with a(n).

Original entry on oeis.org

1, 16, 169, 169744, 16974441796, 1697444179660172924176, 16974441796601729241768240010144800000000001, 1697444179660172924176824001014480000000000182400101448000000000020000000000000000000001
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

Next terms are 176, 351 and 702 digits long.

Crossrefs

Cf. A048558, A050628, A061110. See A048558 for the square roots.

Programs

  • Mathematica
    $MaxExtraPrecision = 2^10; a[n_] := a[n] = Block[{k = 10, m = a[n - 1]}, id = IntegerDigits@ m; lng = Length@ id; While[c = Ceiling[ Sqrt[ m*k]]^2; Take[ IntegerDigits@ c, lng] != id, k *= 100]; Min[c, (Sqrt[m]*10^(lng/2) + 1)^2]]; a[1] = 1; Array[a, 11] (* Robert G. Wilson v, Dec 18 2014 *)

A050638 a(n+1) is next smallest square ending with a(n), initial term is 9.

Original entry on oeis.org

9, 49, 1849, 1671849, 24011671849, 408646172724011671849, 14079962896835441528408646172724011671849, 30988070410883251650062468506470600085614079962896835441528408646172724011671849
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1999

Keywords

Crossrefs

Extensions

More terms from Ulrich Schimke (ulrschimke(AT)aol.com), Nov 06 2001

A249799 a(n+1) is the next smallest nontrivial cube beginning with a(n), initial term is 3.

Original entry on oeis.org

3, 343, 34328125, 343281258441879199985152, 3432812584418791999851522633552283890505384030397984598615707004422070464
Offset: 1

Views

Author

Derek Orr, Dec 03 2014

Keywords

Comments

Terms a(6) and a(7) are 219 and 658 digits long, respectively. - Jon E. Schoenfield, Aug 06 2017

Crossrefs

Programs

  • PARI
    a(n)=k=n;s=1;while(s<10^7,if(s%10,if(s^3\(10^(#Str(s^3)-#Str(k)))==k,print1(s^3,", ");k=s^3));s++)
    a(3)
  • Python
    def f(x):
        n = x
        s = 1
        while s < 10**7:
            if s % 10:
                S = str(s**3)
                if S.startswith(str(n)):
                    print(s**3,end=', ')
                    n = s**3
            s += 1
    f(3)
    

A249894 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 3.

Original entry on oeis.org

3, 36, 361, 361201, 36120142809, 3612014280924268428225, 361201428092426842822525044572369542546150009
Offset: 1

Views

Author

Derek Orr, Nov 08 2014

Keywords

Crossrefs

Programs

  • PARI
    a(n)=k=n; s=1; while(s<5*10^7, if(s%10, if(s^2\(10^(#Str(s^2)-#Str(k)))==k, print1(s^2, ", "); k=s^2)); s++)
    a(3)
    
  • Python
    def f(x):
      print(x, end=', ')
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**2)
          if S.startswith(str(n)):
            print(s**2, end=', ')
            n = s**2
        s += 1
    f(3)

Extensions

a(7) corrected by Hiroaki Yamanouchi, Nov 17 2014

A249895 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 5.

Original entry on oeis.org

5, 529, 529984, 52998485796, 5299848579629072273476, 529984857962907227347600150092608188876380736
Offset: 1

Views

Author

Derek Orr, Nov 08 2014

Keywords

Crossrefs

Programs

  • PARI
    a(n)=k=n; s=1; while(s<5*10^7, if(s%10, if(s^2\(10^(#Str(s^2)-#Str(k)))==k, print1(s^2, ", "); k=s^2)); s++)
    a(5)
    
  • Python
    def f(x):
      print(x, end=', ')
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**2)
          if S.startswith(str(n)):
            print(s**2, end=', ')
            n = s**2
        s += 1
    f(5)

A249896 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 6.

Original entry on oeis.org

6, 64, 64009, 6400960036, 640096003602877347904, 640096003602877347904912233550482787380625, 6400960036028773479049122335504827873806251020537411455326101704116338781035920283225
Offset: 1

Views

Author

Derek Orr, Nov 08 2014

Keywords

Comments

a(11) has 1374 digits, a(12) has 2749, a(13) has 5499, a(14) has 10998. - Robert Israel, Nov 25 2020

Crossrefs

Programs

  • Maple
    R:= 6: x:= 6: s:= 2:
    for iter from 1 while length(x) < 1000 do
      for d from 1 do
       if d::even then sp:= 1+ 10^(d/2)*s
       else
         sp:= ceil(sqrt(10^d*x));
         if sp mod 10 = 0 then sp:=sp+1; fi
       fi;
       if sp^2 < (x+1)*10^d then
         x:= sp^2; s:= sp; R:= R, x; break
       fi
      od;
    od:
    R; # Robert Israel, Nov 25 2020
  • PARI
    a(n)=k=n; s=1; while(s<5*10^7, if(s%10, if(s^2\(10^(#Str(s^2)-#Str(k)))==k, print1(s^2, ", "); k=s^2)); s++)
    a(7)
    
  • Python
    def f(x):
      print(x, end=', ')
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**2)
          if S.startswith(str(n)):
            print(s**2, end=', ')
            n = s**2
        s += 1
    f(7)

A249897 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 7.

Original entry on oeis.org

7, 729, 729316, 7293164743396, 72931647433968832639882896, 72931647433968832639882896319584064899663299793041401
Offset: 1

Views

Author

Derek Orr, Nov 08 2014

Keywords

Crossrefs

Programs

  • PARI
    a(n)=k=n; s=1; while(s<5*10^7, if(s%10, if(s^2\(10^(#Str(s^2)-#Str(k)))==k, print1(s^2, ", "); k=s^2)); s++)
    a(7)
    
  • Python
    def f(x):
      print(x, end=', ')
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**2)
          if S.startswith(str(n)):
            print(s**2, end=', ')
            n = s**2
        s += 1
    f(7)

Extensions

a(5)-a(6) corrected by Hiroaki Yamanouchi, Nov 17 2014

A249893 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 2.

Original entry on oeis.org

2, 25, 256, 256036, 2560361612769, 256036161276932002260000001, 256036161276932002260000001607597862784080913990785121
Offset: 1

Views

Author

Derek Orr, Nov 08 2014

Keywords

Comments

a(12) has 1717 digits. - Michael S. Branicky, Feb 25 2021

Crossrefs

Programs

  • PARI
    a(n)=k=n;s=1;while(s<5*10^7,if(s%10,if(s^2\(10^(#Str(s^2)-#Str(k)))==k,print1(s^2,", ");k=s^2));s++)
    a(2)
    
  • Python
    def f(x):
      print(x,end=', ')
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**2)
          if S.startswith(str(n)):
            print(s**2,end=', ')
            n = s**2
        s += 1
    f(2)
    
  • Python
    from math import isqrt
    def anext(an):
      lo, hi = an*10, an*10 + 9
      while True:
        found = False
        if isqrt(hi)**2 > lo: return (isqrt(lo)+1)**2
        lo, hi = lo*10, hi*10 + 9
    n, an = 1, 2
    for n in range(2, 17):
      an = anext(an)
      print(n, an) # Michael S. Branicky, Feb 25 2021

A249898 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 8.

Original entry on oeis.org

8, 81, 81225, 8122515625, 812251562541751472569, 812251562541751472569881528811450814530084
Offset: 1

Views

Author

Derek Orr, Nov 08 2014

Keywords

Crossrefs

Programs

  • PARI
    a(n)=k=n; s=1; while(s<5*10^7, if(s%10, if(s^2\(10^(#Str(s^2)-#Str(k)))==k, print1(s^2, ", "); k=s^2)); s++)
    a(8)
    
  • Python
    def f(x):
      print(x, end=', ')
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**2)
          if S.startswith(str(n)):
            print(s**2, end=', ')
            n = s**2
        s += 1
    f(8)
Showing 1-10 of 14 results. Next