A048561
a(n+1) is next smallest nontrivial square beginning with a(n), initial square is 9.
Original entry on oeis.org
9, 961, 9616201, 961620162020001, 9616201620200016202000200000001, 96162016202000162020002000000018891984632653500321758097698025
Offset: 0
A050636
a(n+1) is next smallest square ending with a(n), initial term is 4.
Original entry on oeis.org
4, 64, 1764, 6041764, 96126041764, 8584885596126041764, 1094573934406914368584885596126041764, 164840278246153785356947805564195221094573934406914368584885596126041764
Offset: 1
a(6) = 8584885596126041764 = 2929997542^2.
More terms from Ulrich Schimke (ulrschimke(AT)aol.com), Nov 06 2001
A051671
Smallest positive number whose digits concatenated with all previous terms forms a perfect square.
Original entry on oeis.org
4, 9, 284, 61209, 14204828164, 4440027571600000000001, 7667716927194638935286982918857620344809476
Offset: 0
284 belongs to the sequence because 49284=222^2.
- A. Murthy, Smar. Notions J. Vol. 11 N. 1-2-3 Spring 2000.
A048557
a(1) = 1; a(n+1) is next smallest nontrivial square beginning with a(n).
Original entry on oeis.org
1, 16, 169, 169744, 16974441796, 1697444179660172924176, 16974441796601729241768240010144800000000001, 1697444179660172924176824001014480000000000182400101448000000000020000000000000000000001
Offset: 1
-
$MaxExtraPrecision = 2^10; a[n_] := a[n] = Block[{k = 10, m = a[n - 1]}, id = IntegerDigits@ m; lng = Length@ id; While[c = Ceiling[ Sqrt[ m*k]]^2; Take[ IntegerDigits@ c, lng] != id, k *= 100]; Min[c, (Sqrt[m]*10^(lng/2) + 1)^2]]; a[1] = 1; Array[a, 11] (* Robert G. Wilson v, Dec 18 2014 *)
A050630
a(n+1) is next smallest nontrivial square containing a(n) as a substring, initial term is 4.
Original entry on oeis.org
4, 49, 1849, 18496, 103184964, 7383508103184964, 544680602158273835081031849649
Offset: 1
Starting with a(2)=49, the sequence is identical
A050632.
A065297
a(n+1) is the smallest number > a(n) such that the digits of a(n)^2 are all (with multiplicity) properly contained in the digits of a(n+1)^2, with a(0)=1.
Original entry on oeis.org
1, 4, 13, 36, 113, 487, 1036, 3214, 10456, 36786, 100963, 319656, 1001964, 3165969, 10001786, 31626854, 100013919, 316256807, 1000029656, 3162322481, 10000115537
Offset: 0
13^2 = 169 and 36 is the next smallest number whose square (in this case 1296) properly contains the digits 1,6,9.
-
import Data.List ((\\), sort)
a065297 n = a065297_list !! n
a065297_list = 1 : f 1 (drop 2 a000290_list) where
f x (q:qs) | null (xs \\ sq) && sort xs /= sort sq = y : f y qs
| otherwise = f x qs
where y = a000196 q; sq = show q; xs = show (x * x)
-- Reinhard Zumkeller, Nov 22 2012
A249799
a(n+1) is the next smallest nontrivial cube beginning with a(n), initial term is 3.
Original entry on oeis.org
3, 343, 34328125, 343281258441879199985152, 3432812584418791999851522633552283890505384030397984598615707004422070464
Offset: 1
-
a(n)=k=n;s=1;while(s<10^7,if(s%10,if(s^3\(10^(#Str(s^3)-#Str(k)))==k,print1(s^3,", ");k=s^3));s++)
a(3)
-
def f(x):
n = x
s = 1
while s < 10**7:
if s % 10:
S = str(s**3)
if S.startswith(str(n)):
print(s**3,end=', ')
n = s**3
s += 1
f(3)
A065298
a(n+1) is the smallest number > a(n) such that the digits of a(n)^2 are all (with multiplicity) properly contained in the digits of a(n+1)^2, with a(0)=2.
Original entry on oeis.org
2, 7, 43, 136, 367, 1157, 3658, 10183, 32193, 101407, 320537, 1001842, 3166463, 10001923, 31627114, 100017313, 316599084, 1000104687, 3162331407, 10000483663
Offset: 0
43^2 = 1849 and 136 is the next smallest number whose square (in this case 18496) properly contains the digits 1,4,8,9.
A249894
a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 3.
Original entry on oeis.org
3, 36, 361, 361201, 36120142809, 3612014280924268428225, 361201428092426842822525044572369542546150009
Offset: 1
-
a(n)=k=n; s=1; while(s<5*10^7, if(s%10, if(s^2\(10^(#Str(s^2)-#Str(k)))==k, print1(s^2, ", "); k=s^2)); s++)
a(3)
-
def f(x):
print(x, end=', ')
n = x
s = 1
while s < 10**7:
if s % 10:
S = str(s**2)
if S.startswith(str(n)):
print(s**2, end=', ')
n = s**2
s += 1
f(3)
A249895
a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 5.
Original entry on oeis.org
5, 529, 529984, 52998485796, 5299848579629072273476, 529984857962907227347600150092608188876380736
Offset: 1
-
a(n)=k=n; s=1; while(s<5*10^7, if(s%10, if(s^2\(10^(#Str(s^2)-#Str(k)))==k, print1(s^2, ", "); k=s^2)); s++)
a(5)
-
def f(x):
print(x, end=', ')
n = x
s = 1
while s < 10**7:
if s % 10:
S = str(s**2)
if S.startswith(str(n)):
print(s**2, end=', ')
n = s**2
s += 1
f(5)
Showing 1-10 of 18 results.
Comments