A048571 Triangle read by rows: T(n,k) = number of distinct prime factors of C(n,k).
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 2, 2, 2, 2, 2, 0, 0, 1, 2, 2, 2, 2, 1, 0, 0, 1, 2, 2, 3, 2, 2, 1, 0, 0, 1, 2, 3, 3, 3, 3, 2, 1, 0, 0, 2, 2, 3, 4, 3, 4, 3, 2, 2, 0, 0, 1, 2, 3, 4, 4, 4, 4, 3, 2, 1, 0, 0, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 2, 0
Offset: 0
Examples
Triangle begins: 0 0,0 0,1,0 0,1,1,0 0,1,2,1,0 0,1,2,2,1,0 0,2,2,2,2,2,0 0,1,2,2,2,2,1,0 ...
Links
- T. D. Noe, Rows n=0..100 of triangle, flattened
- Pierre Goetgheluck, On prime divisors of binomial coefficients, Math. Comp. 51 (1988), no. 183, 325-329.
Programs
-
Mathematica
Flatten[Table[b=Binomial[n,k]; If[b==1, 0, Length[FactorInteger[b]]], {n,0,12}, {k,0,n}]] (* T. D. Noe, Oct 19 2007, Apr 03 2012 *) Table[PrimeNu[Binomial[n,k]],{n,0,15},{k,0,n}]//Flatten (* Harvey P. Dale, Jun 11 2019 *)
Formula
Extensions
Edited Oct 06 2007 at the suggestion of T. D. Noe
Corrected by T. D. Noe, Oct 19 2007