cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048581 Numerators of b(n) = (1/16^n)*(4/(8*n+1) - 2/(8*n+4) - 1/(8*n+5) - 1/(8*n+6)).

Original entry on oeis.org

47, 53, 829, 79, 857, 1901, 5273, 97, 1787, 5563, 4519, 4057, 19139, 743, 25681, 229, 3687, 18647, 8329, 3853, 51067, 28069, 20483, 335, 72791, 4379, 85093, 22901, 6557, 52673, 112577, 2501, 127759, 13571, 15989, 38083, 161003, 28319, 35813
Offset: 0

Views

Author

Benoit Cloitre, Aug 13 2002

Keywords

Comments

Sum_{k>=0} b(k) = Pi was the first BBP formula for Pi (Bayley-Borwein-Plouffe in 1995). Allows one to extract any specified binary digit of Pi.

Crossrefs

Cf. A066968.

Programs

  • Mathematica
    Numerator[Table[1/16^n*(4/(8*n + 1) - 2/(8*n + 4) - 1/(8*n + 5) - 1/(8*n + 6)), {n, 0, 100}]] (* G. C. Greubel, Feb 18 2017 *)
  • PARI
    a(n)=numerator(1/16^n*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)))
    
  • PARI
    a(n)=numerator((1/16)^n*sum(i=1,4,((-1)^(ceil(4/(2*i))))*(floor(4/i))/(8*n+i+floor(sqrt(i-1))*(floor(sqrt(i-1))+1)))) \\ Alexander R. Povolotsky, Aug 31 2009

Formula

Sum_{k>=0} b(k) = Pi.
a(n) = numerator((1/16)^n*sum(i=1,4,((-1)^(ceiling(4/(2*i))))*(floor(4/i))/(8*n+i+floor(sqrt(i-1))*(floor(sqrt(i-1))+1)))). - Alexander R. Povolotsky, Aug 31 2009