A048622 Difference of maximal and central values of A001222 when applied to {C(n,k)} set.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 1, 2, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 1, 1, 3, 2, 1, 0, 2, 1, 2, 1, 1, 0, 0, 0, 2, 2, 1, 0, 1, 1, 3, 2, 3, 2, 0, 0, 2, 0, 0, 0, 4, 3, 4, 3, 2, 2, 3, 3, 5, 4, 3, 2, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 0, 0, 1, 1, 3, 2, 1, 0, 0, 0, 3, 2, 2, 2, 4, 2, 2, 2, 3, 2
Offset: 1
Keywords
Examples
n=24: the sums of prime factor exponents when k runs from 0 to 24 are {0,4,4,5,5,7,6,8,6,8,8,9,7,9,8,8,6,8,6,7,5,5,4,4,0}. The central value is 7, the maximal is 9 so a(24)=9-7.
Links
- Michel Marcus, Table of n, a(n) for n = 1..5000
Programs
-
PARI
a(n) = vecmax(apply(bigomega, vector(n+1, k, binomial(n,k-1)))) - bigomega(binomial(n, n\2)); \\ Michel Marcus, Jun 25 2021