cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048635 Number of rational points of Klein curve over GF(2^n).

Original entry on oeis.org

0, 14, 24, 14, 0, 38, 168, 350, 528, 854, 1848, 4238, 8736, 16646, 31944, 64190, 131376, 265142, 526680, 1044974, 2088768, 4193126, 8404200, 16795166, 33541200, 67059734, 134195064, 268511054, 536991840, 1073711558, 2147211528
Offset: 1

Views

Author

Keywords

Examples

			G.f. = 14*x^2 + 24*x^3 + 14*x^4 + 38*x^6 + 168*x^7 + 350*x^8 + 528*x^9 + ...
		

References

  • N. Elkies, The Klein quartic in number theory, pp. 51-101 of S. Levy, ed., The Eightfold Way, Cambridge Univ. Press, 1999. See p. 77 eq. (3.13), (3.14).

Crossrefs

Cf. A002249.

Programs

  • Mathematica
    LinearRecurrence[{4,-7,8,-4},{0,14,24,14},40] (* Harvey P. Dale, May 09 2017 *)
  • PARI
    {a(n) = if( n<1, 0, 2^n + 1 - 3 * polsym(x^2 - x + 2, n)[n+1])}; /* Michael Somos, Nov 09 2014 */

Formula

a(n) = 2^n + 1 - 3*(a^n + b^n), where a, b are roots of X^2 - X + 2 = 0.
From Colin Barker, Aug 01 2013: (Start)
a(n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 4*a(n-4).
G.f.: 2*x^2*(8*x^2-16*x+7) / ((x-1)*(2*x-1)*(2*x^2-x+1)). (End)