A048646 Primes p such that the decimal digits of p^2 can be partitioned into two or more nonzero squares.
7, 13, 19, 37, 41, 107, 191, 223, 379, 487, 997, 1063, 1093, 1201, 1301, 1907, 2029, 3019, 3169, 3371, 5081, 5099, 5693, 6037, 9041, 9619, 9721, 9907, 10007, 11681, 12227, 12763, 17393, 18493, 19013, 19213, 19219, 21059, 21157, 21193, 25931
Offset: 1
Examples
7 is present because 7^2=49 can be partitioned into two squares 4 and 9; 13^2 = 169 = 16_9; 37^2 = 1369 = 1_36_9. 997^2 = 994009 = 9_9_400_9, 1063^2 = 1129969 = 1_12996_9, 997 and 1063 are primes, so 997 and 1063 are in the sequence.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a048646 n = a048646_list !! (n-1) a048646_list = filter ((== 1) . a010051') a048653_list -- Reinhard Zumkeller, Apr 17 2015
-
Python
from math import isqrt from sympy import primerange def issquare(n): return isqrt(n)**2 == n def ok(n, c): if n%10 in {2, 3, 7, 8}: return False if issquare(n) and c > 1: return True d = str(n) for i in range(1, len(d)): if d[i] != '0' and issquare(int(d[:i])) and ok(int(d[i:]), c+1): return True return False def aupto(lim): return [p for p in primerange(1, lim+1) if ok(p*p, 1)] print(aupto(25931)) # Michael S. Branicky, Jul 10 2021
Extensions
Corrected and extended by Naohiro Nomoto, Sep 01 2001
"Nonzero" added to definition by N. J. A. Sloane, May 08 2021