A048375 Numbers whose square is a concatenation of two nonzero squares.
7, 13, 19, 35, 38, 41, 57, 65, 70, 125, 130, 190, 205, 223, 253, 285, 305, 350, 380, 410, 475, 487, 570, 650, 700, 721, 905, 975, 985, 1012, 1201, 1250, 1265, 1300, 1301, 1442, 1518, 1771, 1900, 2024, 2050, 2163, 2225, 2230, 2277, 2402, 2435, 2530, 2850
Offset: 1
Examples
1771^2 = 3136441 = 3136_441 and 3136 = 56^2, 441 = 21^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..3000
Programs
-
Mathematica
squareQ[n_] := IntegerQ[Sqrt[n]]; okQ[n_] := MatchQ[IntegerDigits[n^2], {a__ /; squareQ[FromDigits[{a}]], b__ /; First[{b}] > 0 && squareQ[FromDigits[{b}]]}]; Select[Range[3000], okQ] (* Jean-François Alcover, Oct 20 2011, updated Dec 13 2016 *)
-
PARI
is_A048375(n)={my(p=100^valuation(n,10));n*=n;while(n>p*=10,issquare(n%p)&&issquare(n\p)&&n%p*10>=p&&return(1))} \\ M. F. Hasler, Jan 25 2016
-
Python
from math import isqrt def issquare(n): return isqrt(n)**2 == n def ok(n): d = str(n) for i in range(1, len(d)): if d[i] != '0' and issquare(int(d[:i])) and issquare(int(d[i:])): return True return False print([r for r in range(2851) if ok(r*r)]) # Michael S. Branicky, Jul 13 2021
Formula
a(n) = sqrt(A039686(n)). - M. F. Hasler, Jan 25 2016
Comments