cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A048375 Numbers whose square is a concatenation of two nonzero squares.

Original entry on oeis.org

7, 13, 19, 35, 38, 41, 57, 65, 70, 125, 130, 190, 205, 223, 253, 285, 305, 350, 380, 410, 475, 487, 570, 650, 700, 721, 905, 975, 985, 1012, 1201, 1250, 1265, 1300, 1301, 1442, 1518, 1771, 1900, 2024, 2050, 2163, 2225, 2230, 2277, 2402, 2435, 2530, 2850
Offset: 1

Views

Author

Patrick De Geest, Mar 15 1999

Keywords

Comments

Leading zeros not allowed, trailing zeros are.
This means that, e.g., 95 is not in the sequence although 95^2 = 9025 could be seen as concatenation of 9 and 025 = 5^2. - M. F. Hasler, Jan 25 2016

Examples

			1771^2 = 3136441 = 3136_441 and 3136 = 56^2, 441 = 21^2.
		

Crossrefs

Programs

  • Mathematica
    squareQ[n_] := IntegerQ[Sqrt[n]]; okQ[n_] := MatchQ[IntegerDigits[n^2], {a__ /; squareQ[FromDigits[{a}]], b__ /; First[{b}] > 0 && squareQ[FromDigits[{b}]]}]; Select[Range[3000], okQ] (* Jean-François Alcover, Oct 20 2011, updated Dec 13 2016 *)
  • PARI
    is_A048375(n)={my(p=100^valuation(n,10));n*=n;while(n>p*=10,issquare(n%p)&&issquare(n\p)&&n%p*10>=p&&return(1))} \\ M. F. Hasler, Jan 25 2016
    
  • Python
    from math import isqrt
    def issquare(n): return isqrt(n)**2 == n
    def ok(n):
      d = str(n)
      for i in range(1, len(d)):
        if d[i] != '0' and issquare(int(d[:i])) and issquare(int(d[i:])):
          return True
      return False
    print([r for r in range(2851) if ok(r*r)]) # Michael S. Branicky, Jul 13 2021

Formula

a(n) = sqrt(A039686(n)). - M. F. Hasler, Jan 25 2016

A048653 Numbers k such that the decimal digits of k^2 can be partitioned into two or more nonzero squares.

Original entry on oeis.org

7, 12, 13, 19, 21, 35, 37, 38, 41, 44, 57, 65, 70, 107, 108, 112, 119, 120, 121, 125, 129, 130, 190, 191, 204, 205, 209, 210, 212, 223, 253, 285, 305, 306, 315, 342, 343, 345, 350, 369, 370, 379, 380, 408, 410, 413, 440, 441, 475, 487, 501, 538, 570, 642, 650
Offset: 1

Views

Author

Keywords

Examples

			12 is present because 12^2=144 can be partitioned into three squares 1, 4 and 4.
108^2 = 11664 = 1_16_64, 120^2 = 14400 = 1_4_400, so 108 and 120 are in the sequence.
		

Crossrefs

Cf. A048646, A048375, A010052, A000290; subsequence of A128783.

Programs

  • Haskell
    a048653 n = a048653_list !! (n-1)
    a048653_list = filter (f . show . (^ 2)) [1..] where
       f zs = g (init $ tail $ inits zs) (tail $ init $ tails zs)
       g (xs:xss) (ys:yss)
         | h xs      = h ys || f ys || g xss yss
         | otherwise = g xss yss
         where h ds = head ds /= '0' && a010052 (read ds) == 1
       g   = False
    -- Reinhard Zumkeller, Oct 11 2011
    
  • Mathematica
    (* This non-optimized program is not suitable to compute a large number of terms. *) split[digits_, pos_] := Module[{pos2}, pos2 = Transpose[{Join[ {1}, Most[pos+1]], pos}]; FromDigits[Take[digits, {#[[1]], #[[2]]}]]& /@ pos2]; sel[n_] := Module[{digits, ip, ip2, accu, nn}, digits = IntegerDigits[n^2]; ip = IntegerPartitions[Length[digits]]; ip2 = Flatten[ Permutations /@ ip, 1]; accu = Accumulate /@ ip2; nn = split[ digits, #]& /@ accu; SelectFirst[nn, Length[#]>1 && Flatten[ IntegerDigits[#] ] == digits && AllTrue[#, #>0 && IntegerQ[Sqrt[#]]&]&] ]; k = 1; Reap[Do[If[(s = sel[n]) != {}, Print["a(", k++, ") = ", n, " ", n^2, " ", s]; Sow[n]], {n, 1, 10^4}]][[2, 1]] (* Jean-François Alcover, Sep 28 2016 *)
  • Python
    from math import isqrt
    def issquare(n): return isqrt(n)**2 == n
    def ok(n, c):
        if n%10 in {2, 3, 7, 8}: return False
        if issquare(n) and c > 1: return True
        d = str(n)
        for i in range(1, len(d)):
            if d[i] != '0' and issquare(int(d[:i])) and ok(int(d[i:]), c+1):
                return True
        return False
    def aupto(lim): return [r for r in range(lim+1) if ok(r*r, 1)]
    print(aupto(650)) # Michael S. Branicky, Jul 10 2021

Extensions

Corrected and extended by Naohiro Nomoto, Sep 01 2001
Definition clarified by Harvey P. Dale, May 09 2021

A219542 Numbers n such that n^2 is a concatenation of 3 nonzero squares, leading zeros not allowed.

Original entry on oeis.org

12, 21, 37, 44, 107, 108, 120, 129, 191, 204, 209, 210, 223, 306, 315, 342, 343, 345, 370, 408, 413, 440, 501, 642, 696, 804, 955, 959, 982, 995, 1002, 1044, 1063, 1065, 1070, 1080, 1107, 1169, 1200, 1275, 1281, 1290, 1301, 1306, 1315, 1349, 1385, 1503, 1910
Offset: 1

Views

Author

Zak Seidov, Nov 22 2012

Keywords

Examples

			a(1) = 12: 12^2 = 144, 1 = 1^2, 4 = 2^2, 4 = 2^2;
a(1500) = 3176900^2 = 100, 9, 2693610000, 100 = 10^2, 9 = 3^2, 2693610000 = 51900^2.
		

Crossrefs

A344045 Primes p such that the decimal digits of p^2 can be partitioned into two or more squares.

Original entry on oeis.org

7, 13, 19, 37, 41, 97, 107, 191, 223, 379, 397, 487, 509, 701, 997, 1049, 1063, 1093, 1201, 1301, 1801, 1907, 2011, 2029, 3019, 3169, 3319, 3371, 3767, 4013, 4451, 5009, 5011, 5081, 5099, 5693, 6037, 6397, 7001, 8009, 9041, 9521, 9619, 9721, 9907, 10007
Offset: 1

Views

Author

Harvey P. Dale, May 09 2021

Keywords

Comments

Similar to A048646 except that here zeros are permitted as squares.

Examples

			97 is a term because 97 is a prime and 97^2 = 9409 which can be partitioned into 9, 4, 0, and 9, each of which is a square.
		

Crossrefs

Programs

  • Mathematica
    tmsQ[n_]:=Total[Boole[AllTrue[Sqrt[#],IntegerQ]&/@Rest[Table[FromDigits/@ TakeList[IntegerDigits[n^2],q],{q,Flatten[Permutations/@ IntegerPartitions[ IntegerLength[ n^2]],1]}]]]]>0; Select[Prime[ Range[ 3000]],tmsQ]
Showing 1-4 of 4 results.