cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048652 Continued fraction for Product_{k >= 1} (1-1/2^k) (Cf. A048651).

Original entry on oeis.org

0, 3, 2, 6, 4, 1, 2, 1, 9, 2, 1, 2, 3, 2, 3, 5, 1, 2, 1, 1, 6, 1, 2, 5, 79, 6, 4, 5, 1, 1, 1, 1, 12, 1, 1, 2, 5, 1, 659, 2, 17, 1, 5, 2, 3, 2, 6, 1, 1, 2, 3, 1, 2, 6, 1, 1, 3, 11, 1, 1, 2, 1, 1, 2, 4, 11, 2, 1, 3, 4, 2, 2, 1, 3, 1, 71, 1, 1, 1, 19, 1, 4, 1, 1, 8, 1, 49, 3, 1, 2, 2, 11, 1, 11, 10, 1, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of the constant Product{k>=1} (1-1/2^k)^(-1) = 3.46274661945506361... (A065446) gives essentially the same sequence.

Examples

			0.2887880950866024212788997219294585937270...
0.288788095086602421278899721... = 0 + 1/(3 + 1/(2 + 1/(6 + 1/(4 + ...)))). - _Harry J. Smith_, May 02 2009
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[ N[ Product[ 1/(1 - 1/2^k), {k, 1, Infinity} ], 500 ], 49]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=prodinf(k=1, -1/2^k, 1); z=contfrac(x); for (n=1, 20001, write("b048652.txt", n-1, " ", z[n])); } \\ Harry J. Smith, May 07 2009

Extensions

Corrected by Harry J. Smith, May 02 2009
Deleted old PARI program. - Harry J. Smith, May 20 2009