A048671 a(n) is the least common multiple of the proper divisors of n.
1, 1, 1, 2, 1, 6, 1, 4, 3, 10, 1, 12, 1, 14, 15, 8, 1, 18, 1, 20, 21, 22, 1, 24, 5, 26, 9, 28, 1, 30, 1, 16, 33, 34, 35, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 7, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60, 1, 62, 63, 32, 65, 66, 1, 68, 69, 70, 1, 72, 1, 74, 75, 76, 77, 78, 1
Offset: 1
Examples
8!/lcm(8) = 48 = 40320/840 while 7!/lcm(7) = 5040/420 = 12 so a(8) = 48/12 = 4. a(5) = 1 = lcm(1,2,3,4,5)/lcm(1,5,10,10,5,1).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Peter Luschny and Stefan Wehmeier, The lcm(1,2,...,n) as a product of sine values sampled over the points in Farey sequences, arXiv:0909.1838 [math.CA], 2009.
- Eric Weisstein's World of Mathematics, Sylvester Cyclotomic Number.
- Index entries for sequences related to lcm's
Crossrefs
Programs
-
Maple
A048671 := n -> ilcm(op(numtheory[divisors](n) minus {1,n})); seq(A048671(i), i=1..79); # Peter Luschny, Mar 21 2011
-
Mathematica
{1}~Join~Table[LCM @@ Most@ Divisors@ n, {n, 2, 79}] (* Michael De Vlieger, May 01 2016 *)
-
PARI
a(n)=my(p=n);if(isprime(n)||(ispower(n,,&p)&&isprime(p)),n/p,n) \\ Charles R Greathouse IV, Jun 24 2011
-
PARI
a(n)=my(p); if(isprimepower(n,&p), n/p, n) \\ Charles R Greathouse IV, May 02 2016
-
Sage
def A048671(n) : if n < 2 : return 1 else : D = divisors(n); D.pop() return lcm(D) [A048671(i) for i in (1..79)] # Peter Luschny, Feb 03 2012
Formula
From Henry Bottomley, May 19 2000: (Start)
a(n) = n if n not a prime power, a(n) = n/p if n = p^m (i.e., a(n) = 1 if n = p). (End)
From Vladeta Jovovic, Jul 04 2002: (Start)
a(n) = n*Product_{d | n} d^mu(d).
Product_{d | n} a(d) = A007956(n). (End)
a(n) = Product_{k=1..n-1} if(gcd(n, k) > 1, 1 - exp(2*pi*i*k/n), 1), where i = sqrt(-1). - Paul Barry, Apr 15 2005
From Peter Luschny, Jun 09 2011: (Start)
a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*Pi/Gamma(k/n)^2, 1).
a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*sin(Pi*k/n), 1). (End)
Extensions
New definition based on a comment of David Wasserman by Peter Luschny, Mar 23 2011
Comments