cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048671 a(n) is the least common multiple of the proper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 10, 1, 12, 1, 14, 15, 8, 1, 18, 1, 20, 21, 22, 1, 24, 5, 26, 9, 28, 1, 30, 1, 16, 33, 34, 35, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 7, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60, 1, 62, 63, 32, 65, 66, 1, 68, 69, 70, 1, 72, 1, 74, 75, 76, 77, 78, 1
Offset: 1

Views

Author

Keywords

Comments

A proper divisor d of n is a divisor of n such that 1 <= d < n.
Previous name was: a(n) = q(n)/q(n-1), where q(n) = n!/A003418(n).

Examples

			8!/lcm(8) = 48 = 40320/840 while 7!/lcm(7) = 5040/420 = 12 so a(8) = 48/12 = 4.
a(5) = 1 = lcm(1,2,3,4,5)/lcm(1,5,10,10,5,1).
		

Crossrefs

Cf. A182936 gives the dual (greatest common divisor).

Programs

Formula

a(n) = A025527(n)/A025527(n-1).
a(n) = (n*A003418(n-1))/A003418(n).
a(n) = A003418(n-1)/A002944(n). [corrected by Michel Marcus, May 18 2020]
From Henry Bottomley, May 19 2000: (Start)
a(n) = n/A014963(n) = lcm(A052126(n), A032742(n)).
a(n) = n if n not a prime power, a(n) = n/p if n = p^m (i.e., a(n) = 1 if n = p). (End)
From Vladeta Jovovic, Jul 04 2002: (Start)
a(n) = n*Product_{d | n} d^mu(d).
Product_{d | n} a(d) = A007956(n). (End)
a(n) = Product_{k=1..n-1} if(gcd(n, k) > 1, 1 - exp(2*pi*i*k/n), 1), where i = sqrt(-1). - Paul Barry, Apr 15 2005
From Peter Luschny, Jun 09 2011: (Start)
a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*Pi/Gamma(k/n)^2, 1).
a(n) = Product_{k=1..n-1} if(gcd(k,n) > 1, 2*sin(Pi*k/n), 1). (End)

Extensions

New definition based on a comment of David Wasserman by Peter Luschny, Mar 23 2011