cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048700 Binary palindromes of odd length (written in base 10).

Original entry on oeis.org

1, 5, 7, 17, 21, 27, 31, 65, 73, 85, 93, 99, 107, 119, 127, 257, 273, 297, 313, 325, 341, 365, 381, 387, 403, 427, 443, 455, 471, 495, 511, 1025, 1057, 1105, 1137, 1161, 1193, 1241, 1273, 1285, 1317, 1365, 1397, 1421, 1453, 1501, 1533, 1539, 1571, 1619, 1651
Offset: 1

Views

Author

Antti Karttunen, Mar 07 1999

Keywords

Comments

Note: you get A006995 (all binary palindromes) if you take (after zero) alternatively 2^n (starting from 2^0 = 1) terms from A048700 and as many from A048701 and then each time, twice as many from both.
A178225(a(n)) = 1. - Reinhard Zumkeller, Oct 21 2011
Comment from Altug Alkan, Dec 03 2015: (Start)
a(6*k) is divisible by 9 for k > 0.
a(3*k+(-1)^k-2) is divisible by 3 for k > 1.
The minimum value of a(n+1) - a(n) occurs when n = 2.
A014551(n) appears in this sequence for n > 0. (End)

Crossrefs

Cf. A048701 (binary palindromes of even length), A002113 (decimal palindromes), A006995 (all binary palindromes).
Cf. also A178225.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    import Data.List (unfoldr)
    a048700 n = a048700_list !! (n-1)
    a048700_list = f 1 $ singleton 1 where
       f z s = m : f (z+1) (insert (c 0) (insert (c 1) s')) where
         c d = foldl (\v d -> 2 * v + d) 0 $ (reverse b) ++ [d] ++ b
         b = unfoldr
             (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2) z
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Oct 21 2011
    
  • Maple
    bit_i := (x,i) -> `mod`(floor(x/(2^i)),2);
    floor_log_2 := proc(n) local nn,i: nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi: nn := floor(nn/2); od: end:
  • Mathematica
    Select[Range@ 1651, # == Reverse@ # && OddQ@ Length@ # &@ IntegerDigits[#, 2] &] (* Michael De Vlieger, Dec 03 2015 *)
  • PARI
    {a(n) = local(f); if( n<1, 0, f = length(binary(n)) - 1; 2^f*n + sum(i=1, f, bittest(n,i) * 2^(f-i)))}; /* Michael Somos, Nov 27 2002 */
    
  • Python
    def A048700(n):
        s = bin(n)[2:]
        return int(s+s[-2::-1],2) # Chai Wah Wu, Feb 26 2021

Formula

a(n) = (2^(floor_log_2(n)))*n + sum('(bit_i(n, i)*(2^(floor_log_2(n)-i)))', 'i'=1..floor_log_2(n));
a(A047264(n)) mod 3 = 0, for n > 1. - Altug Alkan, Dec 03 2015