A048700 Binary palindromes of odd length (written in base 10).
1, 5, 7, 17, 21, 27, 31, 65, 73, 85, 93, 99, 107, 119, 127, 257, 273, 297, 313, 325, 341, 365, 381, 387, 403, 427, 443, 455, 471, 495, 511, 1025, 1057, 1105, 1137, 1161, 1193, 1241, 1273, 1285, 1317, 1365, 1397, 1421, 1453, 1501, 1533, 1539, 1571, 1619, 1651
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) import Data.List (unfoldr) a048700 n = a048700_list !! (n-1) a048700_list = f 1 $ singleton 1 where f z s = m : f (z+1) (insert (c 0) (insert (c 1) s')) where c d = foldl (\v d -> 2 * v + d) 0 $ (reverse b) ++ [d] ++ b b = unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2) z (m,s') = deleteFindMin s -- Reinhard Zumkeller, Oct 21 2011
-
Maple
bit_i := (x,i) -> `mod`(floor(x/(2^i)),2); floor_log_2 := proc(n) local nn,i: nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi: nn := floor(nn/2); od: end:
-
Mathematica
Select[Range@ 1651, # == Reverse@ # && OddQ@ Length@ # &@ IntegerDigits[#, 2] &] (* Michael De Vlieger, Dec 03 2015 *)
-
PARI
{a(n) = local(f); if( n<1, 0, f = length(binary(n)) - 1; 2^f*n + sum(i=1, f, bittest(n,i) * 2^(f-i)))}; /* Michael Somos, Nov 27 2002 */
-
Python
def A048700(n): s = bin(n)[2:] return int(s+s[-2::-1],2) # Chai Wah Wu, Feb 26 2021
Formula
a(n) = (2^(floor_log_2(n)))*n + sum('(bit_i(n, i)*(2^(floor_log_2(n)-i)))', 'i'=1..floor_log_2(n));
a(A047264(n)) mod 3 = 0, for n > 1. - Altug Alkan, Dec 03 2015
Comments