cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A064121 Nonprime numbers n such that the sum of aliquot divisors of n (A001065) and product of aliquot divisors of n (A048741) are both perfect squares.

Original entry on oeis.org

1, 12, 75, 76, 124, 147, 153, 176, 243, 332, 363, 477, 507, 524, 575, 688, 867, 892, 963, 1075, 1083, 1421, 1532, 1573, 1587, 1611, 1916, 2032, 2075, 2224, 2299, 2401, 2421, 2523, 2572, 2883, 2891, 3100, 3479, 3776, 3888, 4107, 4336, 4527, 4961, 4975
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2001

Keywords

Crossrefs

Variant of A064116. - R. J. Mathar, Oct 02 2008
Cf. A064710.

Programs

  • Mathematica
    Select[ Range[5000], IntegerQ[ Sqrt[ Apply[ Plus, Delete[ Divisors[ # ], -1]]]] && IntegerQ[ Sqrt[ Apply[ Times, Delete[Divisors[ # ], -1]]]] && ! PrimeQ[ # ] & ]

A066423 Composite numbers n such that the product of proper divisors of the n does not equal n.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 24, 25, 28, 30, 32, 36, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 121, 124, 126, 128, 130, 132
Offset: 1

Views

Author

Robert G. Wilson v, Dec 26 2001

Keywords

Comments

A084115(a(n))>1; complement of A084116. - Reinhard Zumkeller, May 12 2003

Examples

			The fourth composite number is 9. Its proper or aliquot divisors are 1 and 3. The product of 1 and 3 equals 3 which is not equal to 9. Therefore 9 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; Do[m = Composite[n]; If[ Apply[ Times, Drop[ Divisors[m], -1]] != m, Print[m]], {n, 1, 100} ]
    Select[Range[150],CompositeQ[#]&&Times@@Most[Divisors[#]]!=#&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 18 2020 *)
  • PARI
    is(n)=my(d=numdiv(n)); d>4 || d==3 \\ Charles R Greathouse IV, Oct 15 2015

A048740 Product of divisors of n-th composite number.

Original entry on oeis.org

8, 36, 64, 27, 100, 1728, 196, 225, 1024, 5832, 8000, 441, 484, 331776, 125, 676, 729, 21952, 810000, 32768, 1089, 1156, 1225, 10077696, 1444, 1521, 2560000, 3111696, 85184, 91125, 2116, 254803968, 343, 125000, 2601, 140608, 8503056, 3025, 9834496
Offset: 1

Views

Author

Keywords

Examples

			The third composite number is 8. The product of all divisors of 8 is 8*4*2*1 = 64.
Divisors(48) = {1,2,3,4,6,8,12,16,24,48} => product {1,2,3,4,6,8,12,16,24,48} = 254803968.
Divisors(49) = {1,7,49} => product {1,7,49} = 343.
Divisors(50) = {1,2,5,10,25,50} => product {1,2,5,10,25,50} = 125000.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, 2nd ed., pages 10, 23. New York: Dover, 1966. ISBN 0-486-21096-0.

Crossrefs

Programs

  • Mathematica
    Rest[Times@@Divisors[#]&/@Complement[Range[100], Prime[ Range[ PrimePi[ 100]]]]] (* Harvey P. Dale, Jan 08 2011 *)
    pd[n_] := n^(DivisorSigma[0, n]/2); pd /@ Select[Range[100], CompositeQ] (* Amiram Eldar, Sep 07 2019 *)
  • Python
    from math import isqrt
    from sympy import divisor_count, composite
    def A048740(n): return (lambda m:isqrt(m)**c if (c:=divisor_count(m)) & 1 else m**(c//2))(composite(n)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = A007955(A002808(n)). - Michel Marcus, Sep 07 2019

Extensions

Corrected by Neven Juric (neven.juric(AT)apis-it.hr), May 25 2006
Showing 1-3 of 3 results.