A048742 a(n) = n! - (n-th Bell number).
0, 0, 0, 1, 9, 68, 517, 4163, 36180, 341733, 3512825, 39238230, 474788003, 6199376363, 86987391878, 1306291409455, 20912309745853, 355604563226196, 6401691628921841, 121639267666626943, 2432850284018404628, 51090467301893283249, 1123996221061869232677
Offset: 0
Keywords
Links
Crossrefs
Programs
-
Maple
with(combinat): seq(factorial(n)-bell(n),n=0..21); # Emeric Deutsch, Apr 29 2008
-
Mathematica
Table[n! - BellB[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
-
Sage
[factorial(m) - bell_number(m) for m in range(23)] # Zerinvary Lajos, Jul 06 2008
Formula
E.g.f.: 1/(1-x) - exp(exp(x)-1). - Alois P. Heinz, Apr 27 2016
Comments