A048761 Smallest square greater than or equal to n.
0, 1, 4, 4, 4, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 25, 25, 25, 25, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81
Offset: 0
References
- Krassimir Atanassov, On the 40th and 41st Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 4, No. 3 (1998), 101-104.
- J. Castillo, Other Smarandache Type Functions: Inferior/Superior Smarandache f-part of x, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, 202-204.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Krassimir Atanassov, On Some of Smarandache's Problems, American Research Press, 1999, 27-32.
- Florentin Smarandache, Only Problems, Not Solutions!.
Programs
-
Haskell
a048761 n = (a000196 n + 1 - a010052 n) ^ 2 a048761_list = 0 : concat (f 1 1) where f u v = (take v $ repeat u) : f (u + v + 2) (v + 2) -- Reinhard Zumkeller, Mar 16 2014
-
Magma
[Ceiling(Sqrt(n))^2: n in [0..80]]; // Vincenzo Librandi, Jun 21 2015
-
Maple
A048761 := proc(n) ceil(sqrt(n)) ; %^2 ; end proc: # R. J. Mathar, Sep 26 2011
-
Mathematica
(Ceiling[Sqrt[Range[0, 99]]])^2 (* Alonso del Arte, Jun 21 2015 *)
-
PARI
A048761(n)=if(n,(sqrtint(n-1)+1)^2,0) \\ M. F. Hasler, Oct 05 2009
Formula
a(n) = (ceiling(sqrt(n)))^2. - Alonso del Arte, Jun 21 2015
Sum_{n>=1} 1/a(n)^2 = 2*zeta(3) - Pi^4/90. - Amiram Eldar, Aug 15 2022
Extensions
Missing a(49) = 49 inserted by Reinhard Zumkeller, Mar 16 2014
Comments