cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048761 Smallest square greater than or equal to n.

Original entry on oeis.org

0, 1, 4, 4, 4, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 25, 25, 25, 25, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81
Offset: 0

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Comments

From M. F. Hasler, Oct 05 2009: (Start)
For each k > 0, the term k^2 is listed 2k - 1 times.
a(n+1) is the least square greater than n. (End)

References

  • Krassimir Atanassov, On the 40th and 41st Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 4, No. 3 (1998), 101-104.
  • J. Castillo, Other Smarandache Type Functions: Inferior/Superior Smarandache f-part of x, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, 202-204.

Crossrefs

Programs

  • Haskell
    a048761 n = (a000196 n + 1 - a010052 n) ^ 2
    a048761_list = 0 : concat (f 1 1) where
       f u v = (take v $ repeat u) : f (u + v + 2) (v + 2)
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    [Ceiling(Sqrt(n))^2: n in [0..80]]; // Vincenzo Librandi, Jun 21 2015
  • Maple
    A048761 := proc(n)
            ceil(sqrt(n)) ;
            %^2 ;
    end proc: # R. J. Mathar, Sep 26 2011
  • Mathematica
    (Ceiling[Sqrt[Range[0, 99]]])^2 (* Alonso del Arte, Jun 21 2015 *)
  • PARI
    A048761(n)=if(n,(sqrtint(n-1)+1)^2,0) \\ M. F. Hasler, Oct 05 2009
    

Formula

a(n) = (A000196(n) + 1 - A010052(n))^2. - Reinhard Zumkeller, Mar 16 2014
a(n) = (ceiling(sqrt(n)))^2. - Alonso del Arte, Jun 21 2015
Sum_{n>=1} 1/a(n)^2 = 2*zeta(3) - Pi^4/90. - Amiram Eldar, Aug 15 2022

Extensions

Missing a(49) = 49 inserted by Reinhard Zumkeller, Mar 16 2014