cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A165775 n + (least square >= n), i.e., n + A048761(n).

Original entry on oeis.org

0, 2, 6, 7, 8, 14, 15, 16, 17, 18, 26, 27, 28, 29, 30, 31, 32, 42, 43, 44, 45, 46, 47, 48, 49, 50, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 146
Offset: 0

Views

Author

M. F. Hasler, Oct 05 2009

Keywords

Programs

  • Mathematica
    Table[n+Ceiling[Sqrt[n]]^2,{n,0,70}] (* Harvey P. Dale, Feb 04 2019 *)
  • PARI
    A165775(n)=n+(sqrtint(n-1)+1)^2

Formula

A072690 a(n) = (n - A048760(n)) * (A048761(n) - n).

Original entry on oeis.org

0, 2, 2, 0, 4, 6, 6, 4, 0, 6, 10, 12, 12, 10, 6, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 0, 14, 26, 36, 44, 50, 54, 56, 56, 54, 50, 44, 36, 26, 14, 0, 16, 30, 42, 52, 60, 66, 70, 72, 72, 70, 66
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 02 2002

Keywords

Comments

a(n)=0 iff n is a square.

Crossrefs

a(n) = A053186(n) * A068527(n).

Formula

a(n) = A053186(n) * (A072689(n) - A053186(n)).

A165776 n + (least square > n), i.e., n + A048761(n+1).

Original entry on oeis.org

1, 5, 6, 7, 13, 14, 15, 16, 17, 25, 26, 27, 28, 29, 30, 31, 41, 42, 43, 44, 45, 46, 47, 48, 49, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 145, 146
Offset: 0

Views

Author

M. F. Hasler, Oct 05 2009

Keywords

Examples

			a(4)= 13 = 4+9 because 9 is the least square > 4.
		

Crossrefs

Cf. A165775.

Programs

  • PARI
    A165776(n)=n+(sqrtint(n)+1)^2

Formula

a(n) = A001477(n) + A048761(n+1)

A048760 Largest square <= n.

Original entry on oeis.org

0, 1, 1, 1, 4, 4, 4, 4, 4, 9, 9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
Offset: 0

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Crossrefs

Programs

Formula

a(n) = floor(n^(1/2))^2 = A000290(A000196(n)). - Reinhard Zumkeller, Feb 12 2012, Sep 03 2002
n^2 repeated (2n+1) times, n=0,1,... - Zak Seidov, Oct 25 2008
Sum_{n>=1} (1/a(n) - 1/n) = gamma + zeta(2) (= A345202). - Amiram Eldar, Jun 12 2021
Sum_{n>=1} 1/a(n)^2 = 2*zeta(3) + Pi^4/90. - Amiram Eldar, Aug 15 2022

A068527 Difference between smallest square >= n and n.

Original entry on oeis.org

0, 0, 2, 1, 0, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9
Offset: 0

Views

Author

Vladeta Jovovic, Mar 21 2002

Keywords

Comments

The greedy inverse (sequence of the smallest k such that a(k)=n) starts 0, 3, 2, 6, 5, 11, 10, 18, 17, 27, 26, 38, 37, 51, 50, ... and appears to be given by A010000 and A002522, interleaved. - R. J. Mathar, Nov 17 2014

Crossrefs

Bisections: A348596, A350962.

Programs

Formula

a(n) = A048761(n) - n = ceiling(sqrt(n))^2 - n.
G.f.: (-x^2 + (x-x^2)*Sum_{m>=1} (1+2*m)*x^(m^2))/(1-x)^2. This sum is related to Jacobi Theta functions. - Robert Israel, Nov 17 2014

A068869 Smallest number k such that n! + k is a square.

Original entry on oeis.org

0, 2, 3, 1, 1, 9, 1, 81, 729, 225, 324, 39169, 82944, 176400, 215296, 3444736, 26167684, 114349225, 255004929, 1158920361, 11638526761, 42128246889, 191052974116, 97216010329, 2430400258225, 1553580508516, 4666092737476, 565986718738441, 2137864362693921
Offset: 1

Views

Author

Amarnath Murthy, Mar 13 2002

Keywords

Comments

Observation: for n < 2000, only for n = 1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16 is a(n) a square (see A360210).
According to my conjecture that n! + n^2 != m^2 for n >= 1, m >= 0 (see A004664), for all terms: a(n) != n^2. - Alexander R. Povolotsky, Oct 06 2008
There are two cases: a(n) > sqrt(n!) in A182203 and a(n) < sqrt(n!) in A182204. - Artur Jasinski, Apr 13 2012

Examples

			a(6) = 9 as 6! + 9 = 729 is a square.
		

Crossrefs

Programs

  • Mathematica
    Table[ Ceiling[ Sqrt[n! ]]^2 - n!, {n, 1, 28}]
  • PARI
    A068869(n)=(sqrtint(n!-1)+1)^2-n!  \\ M. F. Hasler, Apr 01 2012
    
  • Python
    from math import factorial, isqrt
    def a(n): return (isqrt((f:=factorial(n))-1)+1)**2 - f
    print([a(n) for n in range(1, 30)]) # Michael S. Branicky, Jan 30 2023

Formula

a(n) = A055228(n)^2 - n! = ceiling(sqrt(n!))^2 - n! = A048761(n!) - n!.
a(n) <= A038202(n)^2, with equality for the n listed in the first comment. - M. F. Hasler, Apr 01 2012

Extensions

More terms from Vladeta Jovovic, Mar 21 2002
Edited by Robert G. Wilson v and N. J. A. Sloane, Mar 22 2002

A077115 Least integer square >= n^3.

Original entry on oeis.org

0, 1, 9, 36, 64, 144, 225, 361, 529, 729, 1024, 1369, 1764, 2209, 2809, 3481, 4096, 5041, 5929, 6889, 8100, 9409, 10816, 12321, 13924, 15625, 17689, 19881, 22201, 24649, 27225, 29929, 33124, 36100, 39601, 43264, 46656, 51076, 55225, 59536
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Examples

			a(10) = 1024, as 1024 = 32^2 is the least square >= 1000 = 10^3.
		

Crossrefs

Programs

  • Magma
    [Ceiling(n^(3/2))^2: n in [0..50]]; // Vincenzo Librandi, Feb 17 2015
  • Mathematica
    lis[n_]:=Module[{c=Sqrt[n^3]},If[IntegerQ[c],c^2,(Floor[c]+1)^2]]; Array[lis,40,0] (* Harvey P. Dale, Jan 22 2013 *)

Formula

a(n) - A070929(n) = n^3.
a(n) = ceiling(n^(3/2))^2. - Benoit Cloitre, Nov 01 2002
a(n) = A185549(n)^2. - Amiram Eldar, May 17 2025
a(n) = A048761(n^3). - Michel Marcus, May 17 2025

A243091 Least number k > n such that n concatenated with k is a perfect square.

Original entry on oeis.org

1, 6, 5, 6, 9, 29, 25, 29, 41, 61, 24, 56, 25, 69, 44, 21, 81, 64, 49, 36, 25, 316, 201, 104, 336, 281, 244, 225, 224, 241, 276, 36, 49, 64, 81, 344, 100, 249, 44, 69, 96, 209, 436, 56, 89, 369, 225, 61, 400, 284, 176, 84, 441, 361, 76, 225, 169, 76, 564, 536, 84, 504, 500, 504, 516, 536
Offset: 0

Views

Author

Derek Orr, Aug 18 2014

Keywords

Comments

Records occur at: 0, 1, 4, 5, 8, 9, 13, 16, 21, 24, 35, 42, 52, 58, 67, 75, 80, ..., . - Robert G. Wilson v, Nov 23 2015

Examples

			a(1) = 6 since 6>1 and 16 = 4^2.
a(2) = 5 since 5>2 and 25 = 5^2.
		

Crossrefs

Cf. A090566.

Programs

  • Mathematica
    f[n_] := Block[{x = n, d = 1 + Floor@ Log10@ n}, q = (Floor@ Sqrt[(10^d + 1) x] + 1)^2; If[q < (10^d) (x + 1), Mod[q, 10^d], Mod[(Floor@ Sqrt[(10^d) (10 x + 1) - 1] + 1)^2, 10^(d + 1)]]]; Array[f, 65] (* Robert G. Wilson v, Nov 23 2015, after the algorithm of David W. Wilson in A090566 *)
    lnk[n_]:=Module[{k=n+1},While[!IntegerQ[Sqrt[n 10^IntegerLength[k]+k]],k++];k]; Array[lnk,70,0] (* Harvey P. Dale, Sep 01 2023 *)
  • PARI
    a(n)=s=Str(n); k=n+1; while(!issquare(eval(concat(s,Str(k)))), k++); return(k)
    vector(100, n, a(n))
    
  • PARI
    A048761 = t->(sqrtint(t-1)+1)^2
    A243091(n)={my(d=#Str(n),a=A048761((1+10^d)*n)); a>=(n+1)*10^d && a=A048761((n*10+1)*10^d); a%10^(d+(a>=100^d))} \\ M. F. Hasler, Nov 24 2015

Extensions

a(0)=1 added by N. J. A. Sloane, Nov 24 2015

A080817 Leading diagonal of triangle in A080818.

Original entry on oeis.org

1, 3, 6, 10, 6, 10, 15, 8, 13, 19, 26, 15, 22, 30, 16, 24, 33, 43, 25, 35, 46, 25, 36, 48, 61, 36, 49, 63, 35, 49, 64, 33, 48, 64, 81, 46, 63, 81, 43, 61, 80, 100, 58, 78, 99, 54, 75, 97, 49, 71, 94, 118, 66, 90, 115, 60, 85, 111, 138, 79, 106, 134, 72, 100, 129, 159, 93, 123
Offset: 1

Views

Author

Amarnath Murthy, Mar 21 2003

Keywords

Crossrefs

Formula

From David Wasserman, May 13 2004: (Start)
a(n) = (ceiling(sqrt(n(n+1)/2)))^2 - n(n-1)/2.
a(n) = A048761(A000217(n)) - A000217(n-1). (End)

Extensions

More terms from David Wasserman, May 13 2004

A232091 Smallest square or promic (oblong) number greater than or equal to n.

Original entry on oeis.org

0, 1, 2, 4, 4, 6, 6, 9, 9, 9, 12, 12, 12, 16, 16, 16, 16, 20, 20, 20, 20, 25, 25, 25, 25, 25, 30, 30, 30, 30, 30, 36, 36, 36, 36, 36, 36, 42, 42, 42, 42, 42, 42, 49, 49, 49, 49, 49, 49, 49, 56, 56, 56, 56, 56, 56, 56, 64, 64, 64, 64, 64, 64, 64, 64, 72, 72, 72, 72, 72, 72, 72, 72, 81
Offset: 0

Views

Author

L. Edson Jeffery, Nov 18 2013

Keywords

Comments

Result attributed to the students Daring, et al., in the links section.
a(n) appears in floor(sqrt(a(n))) = A000194(n) successive terms.
Counting successive equal terms give sequence: 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ... (see A008619). - Michel Marcus, Jan 10 2014

Crossrefs

Cf. A000290 (squares), A002378 (promic or oblong numbers), A002620 (A000290 union A002378).

Programs

  • Magma
    [(Ceiling(n /Ceiling(Sqrt(n)))*Ceiling(Sqrt(n))): n in [1..80]]; // Vincenzo Librandi, Jun 22 2015
  • Mathematica
    Join[{0}, Table[Ceiling[n/Ceiling[Sqrt[n]]] Ceiling[Sqrt[n]], {n, 100}]] (* Alonso del Arte, Nov 18 2013 *)
  • PARI
    a(n)=my(t=sqrtint(n-1)+1);t*((n-1)\t+1) \\ Charles R Greathouse IV, Nov 18 2013
    

Formula

a(n) = ceiling(n/ceiling(sqrt(n)))*ceiling(sqrt(n)).
a(n) = min(k : k >= n, k in A002620).
a(k^2) = k^2; a(k*(k+1)) = k*(k+1).
It appears that a(n) = A216607(n) + n. (Verified for all n<10^9 by Lars Blomberg, Jan 09 2014.) This conjecture now follows from a proof given by David Applegate, Jan 10 2014 (see [Applegate]).
a(n) = min(A048761(n), A259225(n)). - Michel Marcus, Jun 22 2015
Sum_{n>=1} 1/a(n)^2 = 2 - Pi^2/6 + zeta(3). - Amiram Eldar, Aug 16 2022

Extensions

Extended by Charles R Greathouse IV, Nov 18 2013
a(0)=0 prepended by Michel Marcus, Jun 22 2015
Showing 1-10 of 22 results. Next