cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048772 Partial sums of A048696.

Original entry on oeis.org

1, 10, 29, 76, 189, 462, 1121, 2712, 6553, 15826, 38213, 92260, 222741, 537750, 1298249, 3134256, 7566769, 18267802, 44102381, 106472572, 257047533, 620567646, 1498182833
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a048772 n = a048772_list !! n
    a048772_list = scanl1 (+) a048696_list
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Mathematica
    Accumulate[LinearRecurrence[{2,1},{1,9},30]] (* or *) LinearRecurrence[ {3,-1,-1},{1,10,29},30] (* Harvey P. Dale, Apr 20 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,-1,3]^n*[1;10;29])[1,1] \\ Charles R Greathouse IV, Feb 10 2017

Formula

a(n)=2*a(n-1)+a(n-2)+8; a(0)=1, a(1)=10.
a(n)=[ {(9+5*sqrt(2))(1+sqrt(2))^n - (9-5*sqrt(2))(1-sqrt(2))^n}/2*sqrt(2) ]-4.
a(0)=1, a(1)=10, a(2)=29, a(n)=3*a(n-1)-a(n-2)-a(n-3). - Harvey P. Dale, Apr 20 2012
G.f. ( 1+7*x ) / ( (x-1)*(x^2+2*x-1) ). a(n)=A048739(n)+7*A048739(n-1). - R. J. Mathar, Nov 08 2012