cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048778 First partial sums of A048745; second partial sums of A048654.

Original entry on oeis.org

1, 6, 20, 56, 145, 362, 888, 2160, 5233, 12654, 30572, 73832, 178273, 430418, 1039152, 2508768, 6056737, 14622294, 35301380, 85225112, 205751665, 496728506, 1199208744, 2895146064, 6989500945, 16874148030, 40737797084, 98349742280, 237437281729, 573224305826, 1383885893472
Offset: 0

Views

Author

Keywords

Comments

Define a triangle T by T(n,0) = n*(n+1) + 1, T(n,n) = (n+1)*(n+2)/2, and T(r,c) = T(r-1,c) + T(r-1,c-1) + T(r-2,c-1). Then a(n) is the sum of row n. - J. M. Bergot, Mar 06 2013

Crossrefs

Programs

  • Magma
    I:=[1, 6, 20, 56]; [n le 4 select I[n] else 4*Self(n-1) - 4*Self(n-2) + Self(n-4): n in [1..41]]; // G. C. Greubel, Aug 09 2022
    
  • Mathematica
    Table[(Fibonacci[n+3,2] +2*Fibonacci[n+2,2] -(3*n+7))/2, {n, 0, 40}] (* G. C. Greubel, Aug 09 2022 *)
  • PARI
    N=66;  x='x+O('x^N);
    gf= ( -1-2*x ) / ( (x^2+2*x-1)*(x-1)^2 );  Vec(Ser(gf))
    /* Joerg Arndt, Mar 07 2013 */
    
  • SageMath
    [(lucas_number1(n+3, 2, -1) + 2*lucas_number1(n+2, 2, -1) -3*n-7)/2 for n in (0..40)] # G. C. Greubel, Aug 09 2022

Formula

a(n) = 2*a(n-1) + a(n-2) + 3*n + 1, with a(0)=1, a(1)=6.
a(n) = ( ((13 + 9*sqrt(2))/2)*(1 + sqrt(2))^n - ((13 - 9*sqrt(2))/2)*(1 -sqrt(2))^n )/2*sqrt(2) - (3*n + 7)/2.
From R. J. Mathar, Nov 08 2012: (Start)
G.f.: (1 + 2*x) / ( (1-x-x^2)*(1-x)^2 ).
a(n) = A048776(n) + 2*A048776(n-1). (End)
a(n) = (Pell(n+3) + 2*Pell(n+2) - 3*n - 7)/2, where Pell(n) = A000129(n). - G. C. Greubel, Aug 09 2022

Extensions

Corrected by T. D. Noe, Nov 08 2006