A048798 Smallest k > 0 such that n*k is a perfect cube.
1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 4, 289, 12, 361, 50, 441, 484, 529, 9, 5, 676, 1, 98, 841, 900, 961, 2, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, 1849, 242, 75, 2116, 2209, 36, 7, 20, 2601, 338, 2809, 4, 3025, 49, 3249
Offset: 1
Examples
a(12) = a(2*2*3) = 2*3*3 = 18 since 12*18 = 6^3. a(28) = a(2*2*7) = 2*7*7 = 98 since 28*98 = 14^3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from Peter Kagey)
- Krassimir T. Atanassov, On the 22nd, the 23rd and 24th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5, No. 2 (1998), pp. 80-82.
- Krassimir T. Atanassov, On Some of Smarandache's Problems, American Research Press, 1999, 16-21.
- Henry Bottomley, Some Smarandache-type multiplicative sequences.
- Marcela Popescu and Mariana Nicolescu, About the Smarandache Complementary Cubic Function, Smarandache Notions Journal, Vol. 7, No. 1-2-3, 1996, pp. 54-62.
- Florentin Smarandache, Only Problems, Not Solutions! (see Unsolved Problem: 28, p. 26).
Crossrefs
Programs
-
Mathematica
a[n_] := For[k = 1, True, k++, If[ Divisible[c = k^3, n], Return[c/n]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *) f[p_, e_] := p^(Mod[-e, 3]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 10 2020 *) With[{cbs=Range[3300]^3},Table[SelectFirst[cbs,Mod[#,n]==0&]/n,{n,60}]] (* Harvey P. Dale, May 10 2024 *)
-
PARI
a(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^(-f[i,2]%3)) \\ Charles R Greathouse IV, Feb 27 2013
-
PARI
a(n)=for(k=1,n^2,if(ispower(k*n,3),return(k))) vector(100,n,a(n)) \\ Derek Orr, Feb 07 2015
-
Python
from math import prod from sympy import factorint def A048798(n): return prod(p**(-e%3) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 05 2024
Formula
Multiplicative with a(p^e) = p^((-e) mod 3). - Mitch Harris, May 17 2005
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(9)/(3*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = 0.2079875504... . - Amiram Eldar, Oct 28 2022
Extensions
More terms from Patrick De Geest, Feb 15 2000
Comments