cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048798 Smallest k > 0 such that n*k is a perfect cube.

Original entry on oeis.org

1, 4, 9, 2, 25, 36, 49, 1, 3, 100, 121, 18, 169, 196, 225, 4, 289, 12, 361, 50, 441, 484, 529, 9, 5, 676, 1, 98, 841, 900, 961, 2, 1089, 1156, 1225, 6, 1369, 1444, 1521, 25, 1681, 1764, 1849, 242, 75, 2116, 2209, 36, 7, 20, 2601, 338, 2809, 4, 3025, 49, 3249
Offset: 1

Views

Author

Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Comments

Note that in general the smallest number k(>0) such that n*k is a perfect m-th power (rather obviously) = (the smallest m-th power divisible by n)/n and also (slightly less obviously) =n^(m-1)/(the number of solutions of x^m==0 mod n)^m. - Henry Bottomley, Mar 03 2000

Examples

			a(12) = a(2*2*3) = 2*3*3 = 18 since 12*18 = 6^3.
a(28) = a(2*2*7) = 2*7*7 = 98 since 28*98 = 14^3.
		

Crossrefs

Cf. A254767 (analogous sequence with the restriction that k > n).

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, If[ Divisible[c = k^3, n], Return[c/n]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *)
    f[p_, e_] := p^(Mod[-e, 3]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
    With[{cbs=Range[3300]^3},Table[SelectFirst[cbs,Mod[#,n]==0&]/n,{n,60}]] (* Harvey P. Dale, May 10 2024 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^(-f[i,2]%3)) \\ Charles R Greathouse IV, Feb 27 2013
    
  • PARI
    a(n)=for(k=1,n^2,if(ispower(k*n,3),return(k)))
    vector(100,n,a(n)) \\ Derek Orr, Feb 07 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A048798(n): return prod(p**(-e%3) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = A053149(n)/n = n^2/A000189(n)^3.
Multiplicative with a(p^e) = p^((-e) mod 3). - Mitch Harris, May 17 2005
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(9)/(3*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = 0.2079875504... . - Amiram Eldar, Oct 28 2022

Extensions

More terms from Patrick De Geest, Feb 15 2000